skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-equilibrium structural dynamics of supercoiled DNA plasmids exhibits asymmetrical relaxation
Abstract Many cellular processes occur out of equilibrium. This includes site-specific unwinding in supercoiled DNA, which may play an important role in gene regulation. Here, we use the Convex Lens-induced Confinement (CLiC) single-molecule microscopy platform to study these processes with high-throughput and without artificial constraints on molecular structures or interactions. We use two model DNA plasmid systems, pFLIP-FUSE and pUC19, to study the dynamics of supercoiling-induced secondary structural transitions after perturbations away from equilibrium. We find that structural transitions can be slow, leading to long-lived structural states whose kinetics depend on the duration and direction of perturbation. Our findings highlight the importance of out-of-equilibrium studies when characterizing the complex structural dynamics of DNA and understanding the mechanisms of gene regulation.  more » « less
Award ID(s):
1941870
PAR ID:
10364400
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Nucleic Acids Research
Volume:
50
Issue:
5
ISSN:
0305-1048
Page Range / eLocation ID:
p. 2754-2764
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transcription has a mechanical component, as the translocation of the transcription machinery or RNA polymerase (RNAP) on DNA or chromatin is dynamically coupled to the chromatin torsion. This posits chromatin mechanics as a possible regulator of eukaryotic transcription, however, the modes and mechanisms of this regulation are elusive. Here, we first take a statistical mechanics approach to model the torsional response of topology-constrained chromatin. Our model recapitulates the experimentally observed weaker torsional stiffness of chromatin compared to bare DNA and proposes structural transitions of nucleosomes into chirally distinct states as the driver of the contrasting torsional mechanics. Coupling chromatin mechanics with RNAP translocation in stochastic simulations, we reveal a complex interplay of DNA supercoiling and nucleosome dynamics in governing RNAP velocity. Nucleosomes play a dual role in controlling the transcription dynamics. The steric barrier aspect of nucleosomes in the gene body counteracts transcription via hindering RNAP motion, whereas the chiral transitions facilitate RNAP motion via driving a low restoring torque upon twisting the DNA. While nucleosomes with low dissociation rates are typically transcriptionally repressive, highly dynamic nucleosomes offer less of a steric barrier and enhance the transcription elongation dynamics of weakly transcribed genes via buffering DNA twist. We use the model to predict transcription-dependent levels of DNA supercoiling in segments of the budding yeast genome that are in accord with available experimental data. The model unveils a paradigm of DNA supercoiling-mediated interaction between genes and makes testable predictions that will guide experimental design. 
    more » « less
  2. Abstract BackgroundEpigenetic processes are proposed to be a mechanism regulating gene expression during phenotypic plasticity. However, environmentally induced changes in DNA methylation exhibit little-to-no association with differential gene expression in metazoans at a transcriptome-wide level. It remains unexplored whether associations between environmentally induced differential methylation and expression are contingent upon other epigenomic processes such as chromatin accessibility. We quantified methylation and gene expression in larvae of the purple sea urchinStrongylocentrotus purpuratusexposed to different ecologically relevant conditions during gametogenesis (maternal conditioning) and modeled changes in gene expression and splicing resulting from maternal conditioning as functions of differential methylation, incorporating covariates for genomic features and chromatin accessibility. We detected significant interactions between differential methylation, chromatin accessibility, and genic feature type associated with differential expression and splicing. ResultsDifferential gene body methylation had significantly stronger effects on expression among genes with poorly accessible transcriptional start sites while baseline transcript abundance influenced the direction of this effect. Transcriptional responses to maternal conditioning were 4–13 × more likely when accounting for interactions between methylation and chromatin accessibility, demonstrating that the relationship between differential methylation and gene regulation is partially explained by chromatin state. ConclusionsDNA methylation likely possesses multiple associations with gene regulation during transgenerational plasticity inS. purpuratusand potentially other metazoans,but its effects are dependent on chromatin accessibility and underlying genic features. 
    more » « less
  3. Abstract RNA folds cotranscriptionally to traverse out-of-equilibrium intermediate structures that are important for RNA function in the context of gene regulation. To investigate this process, here we study the structure and function of the Bacillus subtilis yxjA purine riboswitch, a transcriptional riboswitch that downregulates a nucleoside transporter in response to binding guanine. Although the aptamer and expression platform domain sequences of the yxjA riboswitch do not completely overlap, we hypothesized that a strand exchange process triggers its structural switching in response to ligand binding. In vivo fluorescence assays, structural chemical probing data and experimentally informed secondary structure modeling suggest the presence of a nascent intermediate central helix. The formation of this central helix in the absence of ligand appears to compete with both the aptamer’s P1 helix and the expression platform’s transcriptional terminator. All-atom molecular dynamics simulations support the hypothesis that ligand binding stabilizes the aptamer P1 helix against central helix strand invasion, thus allowing the terminator to form. These results present a potential model mechanism to explain how ligand binding can induce downstream conformational changes by influencing local strand displacement processes of intermediate folds that could be at play in multiple riboswitch classes. 
    more » « less
  4. Abstract Oligonucleotide hybridization is crucial in various biological, prebiotic and nanotechnological processes, including gene regulation, non-enzymatic primer extension and DNA nanodevice assembly. Although extensive research has focused on the thermodynamics and kinetics of nucleic acid hybridization, the behavior of complex mixtures and the outcome of competition for target binding remain less well understood. In this study, we investigate the impact of mismatches and bulges in a 12 bp DNA or RNA duplex on its association (kon) and dissociation (koff) kinetics. We find that such defects have relatively small effects on the association kinetics, while the dissociation kinetics vary in a position-dependent manner by up to 6 orders of magnitude. Building upon this observation, we explored a competition scenario involving multiple oligonucleotides, and observed a transient low specificity of probe hybridization to fully versus partially complementary targets in solution. We characterize these long-lived metastable states and their evolution toward equilibrium, and show that sufficiently long-lived mis-paired duplexes can serve as substrates for prebiotically relevant chemical copying reactions. Our results suggest that transient low accuracy states may spontaneously emerge within all complex nucleic acid systems comprising a large enough number of competing strands, with potential repercussions for gene regulation in the realm of modern biology and the prebiotic preservation of genetic information. 
    more » « less
  5. Abstract Living things benefit from exquisite molecular sensitivity in many of their key processes, including DNA replication, transcription and translation, chemical sensing, and morphogenesis. At thermodynamic equilibrium, the basic biophysical mechanism for sensitivity is cooperative binding, for which it can be shown that the Hill coefficient, a sensitivity measure, cannot exceed the number of binding sites. Generalizing this fact, we find that for any kinetic scheme, at or away from thermodynamic equilibrium, a very simple structural quantity, the size of the support of a perturbation, always limits the effective Hill coefficient. We show how this bound sheds light on and unifies diverse sensitivity mechanisms, including kinetic proofreading and a nonequilibrium Monod-Wyman-Changeux (MWC) model proposed for theE. coliflagellar motor switch, representing in each case a simple, precise bridge between experimental observations and the models we write down. In pursuit of mechanisms that saturate the support bound, we find a nonequilibrium binding mechanism, nested hysteresis, with sensitivity exponential in the number of binding sites, with implications for our understanding of models of gene regulation and the function of biomolecular condensates. 
    more » « less