skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vivarium: an interface and engine for integrative multiscale modeling in computational biology
Abstract MotivationThis article introduces Vivarium—software born of the idea that it should be as easy as possible for computational biologists to define any imaginable mechanistic model, combine it with existing models and execute them together as an integrated multiscale model. Integrative multiscale modeling confronts the complexity of biology by combining heterogeneous datasets and diverse modeling strategies into unified representations. These integrated models are then run to simulate how the hypothesized mechanisms operate as a whole. But building such models has been a labor-intensive process that requires many contributors, and they are still primarily developed on a case-by-case basis with each project starting anew. New software tools that streamline the integrative modeling effort and facilitate collaboration are therefore essential for future computational biologists. ResultsVivarium is a software tool for building integrative multiscale models. It provides an interface that makes individual models into modules that can be wired together in large composite models, parallelized across multiple CPUs and run with Vivarium’s discrete-event simulation engine. Vivarium’s utility is demonstrated by building composite models that combine several modeling frameworks: agent-based models, ordinary differential equations, stochastic reaction systems, constraint-based models, solid-body physics and spatial diffusion. This demonstrates just the beginning of what is possible—Vivarium will be able to support future efforts that integrate many more types of models and at many more biological scales. Availability and implementationThe specific models, simulation pipelines and notebooks developed for this article are all available at the vivarium-notebooks repository: https://github.com/vivarium-collective/vivarium-notebooks. Vivarium-core is available at https://github.com/vivarium-collective/vivarium-core, and has been released on Python Package Index. The Vivarium Collective (https://vivarium-collective.github.io) is a repository of freely available Vivarium processes and composites, including the processes used in Section 3. Supplementary Materials provide with an extensive methodology section, with several code listings that demonstrate the basic interfaces. Supplementary informationSupplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
1903477
PAR ID:
10364431
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
38
Issue:
7
ISSN:
1367-4803
Page Range / eLocation ID:
p. 1972-1979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract SummaryNew advances in single-cell multi-omics experiments have allowed biologists to examine how various biological factors regulate processes in concert on the cellular level. However, measuring multiple cellular features for a single cell can be quite resource-intensive or impossible with the current technology. By using optimal transport (OT) to align cells and features across disparate datasets produced by separate assays, Single Cell alignment using Optimal Transport + (SCOT+), our unsupervised single-cell alignment software suite, allows biologists to align their data without the need for any correspondence. SCOT+ implements a generic optimal transport solution that can be reduced to multiple different previously studied OT optimization procedures including SCOT, SCOTv2, SCOOTR, and AGW for single cell, each of which provides state-of-the-art single-cell alignment performance. Outside of giving a unified framework to interact with prior formulations, the generality of SCOT+ optimization naturally gives rise to a new OT loss, Unbalanced Augmented Gromov-Wasserstein (UAGW), and a corresponding optimizer. With our user-friendly website and tutorials, this new package will help improve biological analyses by allowing for more accurate downstream analyses on multi-omics single-cell measurements. Implementation and AvailabilityOur algorithm is implemented in Pytorch and available on PyPI and GitHub (https://github.com/scotplus/scotplus). Additionally, we have many tutorials available in a separate GitHub repository (https://github.com/scotplus/book_source) and on our website (https://scotplus.github.io/). 
    more » « less
  2. Abstract MotivationReconstruction of genome-scale networks from gene expression data is an actively studied problem. A wide range of methods that differ between the types of interactions they uncover with varying trade-offs between sensitivity and specificity have been proposed. To leverage benefits of multiple such methods, ensemble network methods that combine predictions from resulting networks have been developed, promising results better than or as good as the individual networks. Perhaps owing to the difficulty in obtaining accurate training examples, these ensemble methods hitherto are unsupervised. ResultsIn this article, we introduce EnGRaiN, the first supervised ensemble learning method to construct gene networks. The supervision for training is provided by small training datasets of true edge connections (positives) and edges known to be absent (negatives) among gene pairs. We demonstrate the effectiveness of EnGRaiN using simulated datasets as well as a curated collection of Arabidopsis thaliana datasets we created from microarray datasets available from public repositories. EnGRaiN shows better results not only in terms of receiver operating characteristic and PR characteristics for both real and simulated datasets compared with unsupervised methods for ensemble network construction, but also generates networks that can be mined for elucidating complex biological interactions. Availability and implementationEnGRaiN software and the datasets used in the study are publicly available at the github repository: https://github.com/AluruLab/EnGRaiN. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  3. Abstract <bold>Background</bold>Existing software for comparison of species delimitation models do not provide a (true) metric or distance functions between species delimitation models, nor a way to compare these models in terms of relative clustering differences along a lattice of partitions. <bold>Results</bold>is a Python package for analyzing and visualizing species delimitation models in an information theoretic framework that, in addition to classic measures of information such as the entropy and mutual information [1], provides for the calculation of the Variation of Information (VI) criterion [2], a true metric or distance function for species delimitation models that is aligned with the lattice of partitions. <bold>Conclusions</bold>is available under the MIT license from its public repository (https://github.com/jeetsukumaran/piikun), and can be installed locally using the Python package manager ‘pip‘. 
    more » « less
  4. Abstract SummaryThe growing availability of genomewide polymorphism data has fueled interest in detecting diverse selective processes affecting population diversity. However, no model-based approaches exist to jointly detect and distinguish the two complementary processes of balancing and positive selection. We extend the BalLeRMixB-statistic framework described in Cheng and DeGiorgio (2020) for detecting balancing selection and present BalLeRMix+, which implements five B statistic extensions based on mixture models to robustly identify both types of selection. BalLeRMix+ is implemented in Python and computes the composite likelihood ratios and associated model parameters for each genomic test position. Availability and implementationBalLeRMix+ is freely available at https://github.com/bioXiaoheng/BallerMixPlus. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  5. Abstract MotivationTransposable elements (TEs) are ubiquitous in genomes and many remain active. TEs comprise an important fraction of the transcriptomes with potential effects on the host genome, either by generating deleterious mutations or promoting evolutionary novelties. However, their functional study is limited by the difficulty in their identification and quantification, particularly in non-model organisms. ResultsWe developed a new pipeline [explore active transposable elements (ExplorATE)] implemented in R and bash that allows the quantification of active TEs in both model and non-model organisms. ExplorATE creates TE-specific indexes and uses the Selective Alignment (SA) to filter out co-transcribed transposons within genes based on alignment scores. Moreover, our software incorporates a Wicker-like criteria to refine a set of target TEs and avoid spurious mapping. Based on simulated and real data, we show that the SA strategy adopted by ExplorATE achieved better estimates of non-co-transcribed elements than other available alignment-based or mapping-based software. ExplorATE results showed high congruence with alignment-based tools with and without a reference genome, yet ExplorATE required less execution time. Likewise, ExplorATE expands and complements most previous TE analyses by incorporating the co-transcription and multi-mapping effects during quantification, and provides a seamless integration with other downstream tools within the R environment. Availability and implementationSource code is available at https://github.com/FemeniasM/ExplorATEproject and https://github.com/FemeniasM/ExplorATE_shell_script. Data available on request. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less