skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterization of the nickel-inserting cyclometallase LarC from Moorella thermoacetica and identification of a cytidinylylated reaction intermediate
Abstract LarC catalyzes the CTP-dependent insertion of nickel ion into pyridinium-3,5-bisthiocarboxylic acid mononucleotide (P2TMN), the final biosynthetic step for generating the nickel-pincer nucleotide (NPN) enzyme cofactor. In this study, we characterized a LarC homolog from Moorella thermoacetica (LarCMt) and characterized selected properties of the protein. We ruled out the hypothesis that enzyme inhibition by its product pyrophosphate accounts for its apparent single-turnover activity. Most notably, we identified a cytidinylylated-substrate intermediate that is formed during the reaction of LarCMt. Selected LarCMt variants with substitutions at the predicted CTP-binding site retained substantial amounts of activity, but exhibited greatly reduced levels of the CMP-P2TMN intermediate. In contrast, enhanced amounts of the CMP-P2TMN intermediate were generated when using LarCMt from cells grown on medium without supplemental nickel. On the basis of these results, we propose a functional role for CTP in the unprecedented nickel-insertase reaction during NPN biosynthesis.  more » « less
Award ID(s):
1807073
PAR ID:
10364454
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Metallomics
Volume:
14
Issue:
3
ISSN:
1756-591X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    At least two types of pincer complexes are known to exist in biology. A metal-pyrroloquinolone quinone (PQQ) cofactor was first identified in bacterial methanol dehydrogenase, and later also found in selected short-chain alcohol dehydrogenases of other microorganisms. The PQQ-associated metal can be calcium, magnesium, or a rare earth element depending on the enzyme sequence. Synthesis of this organic ligand requires a series of accessory proteins acting on a small peptide, PqqA. Binding of metal to PQQ yields an ONO-type pincer complex. More recently, a nickel-pincer nucleotide (NPN) cofactor was discovered in lactate racemase, LarA. This cofactor derives from nicotinic acid adenine dinucleotide via action of a carboxylase/hydrolase, sulfur transferase, and nickel insertase, resulting in an SCS-type pincer complex. The NPN cofactor likely occurs in selected other racemases and epimerases of bacteria, archaea, and a few eukaryotes. 
    more » « less
  2. Abstract Lipopolysaccharide (LPS) is essential in most Gram-negative bacteria, but mutants of several species have been isolated that can survive in its absence.Caulobacter crescentusviability in the absence of LPS is partially dependent on the anionic sphingolipid ceramide diphosphoglycerate (CPG2). Genetic analyses showed thatccna_01210, which encodes a nucleotidyltransferase, is required for CPG2 production. Using purified recombinant protein, we determined that CCNA_01210 (CpgD) is a phosphoglycerate cytidylyltransferase which uses CTP and 3-phosphoglycerate to produce CDP-glycerate, which we hypothesize is the phosphoglycerate donor for CPG2 synthesis. CpgD had optimum activity at pH 7.5-8 in the presence of magnesium. CpgD exhibited Michaelis-Menten kinetics with respect to 3-phosphoglycerate (Km,app = 10.9 ± 0.7 mM; Vmax,app = 0.72 ± 0.02 µmol/min/mg enzyme) and CTP (Km,app = 4.8 ± 0.9 mM; Vmax,app = 0.44 ± 0.03 µmol/min/mg enzyme). The characterization of this enzyme uncovers another piece of the pathway towards CPG2 synthesis. 
    more » « less
  3. The LarA superfamily consists of nickeldependent enzymes catalyzing racemization/epimerization reactions using a variety of α-hydroxy acids. The first-characterized LarA, a lactate racemase from Lactobacillus plantarum, led to the discovery of the nickel-pincer nucleotide (NPN) cofactor that is utilized by family members with alternative substrates, including malate racemase from Thermoanaerobacterium thermosaccharolyticum (Mar2). In this work, a higher resolution crystal structure of Mar2 was obtained with better data quality that revealed new structural and dynamic characteristics of the protein. A model of the Mar2 structure with bound cofactor and substrate was generated to uncover the common and the unique features among two distinct subgroups in the LarA superfamily. In addition, structure-guided mutational studies were used to examine the importance of residues that are modeled to interact with NPN and to explore which residues were critical for conferring specificity for malate. In particular, substitution of two residues involved in substrate binding in Mar2 to match the corresponding residues in LarA led to the acquisition of low levels of lactate racemase activity. Of additional interest, the substrate spectrum was expanded to include tartrate, an analog of malate. These new findings will help to better understand structure–function relationships of many other LarA homologs that are broadly distributed in bacterial and archaeal species. 
    more » « less
  4. null (Ed.)
    Isomerization reactions are fundamental in biology. Lactate racemase, which isomerizes L- and D-lactate, is composed of the LarA protein and a nickel-containing cofactor, the nickel-pincer nucleotide (NPN). In this study, we show that LarA is part of a superfamily containing many different enzymes. We overexpressed and purified 13 lactate racemase homologs, incorporated the NPN cofactor, and assayed the isomerization of different substrates guided by gene context analysis. We discovered two malate racemases, one phenyllactate racemase, one α-hydroxyglutarate racemase, two D-gluconate 2-epimerases, and one short-chain aliphatic α-hydroxyacid racemase among the tested enzymes. We solved the structure of a malate racemase apoprotein and used it, along with the previously described structures of lactate racemase holoprotein and D-gluconate epimerase apoprotein, to identify key residues involved in substrate binding. This study demonstrates that the NPN cofactor is used by a diverse superfamily of α-hydroxyacid racemases and epimerases, widely expanding the scope of NPN-dependent enzymes. 
    more » « less
  5. Abstract Aldoximes are amino acid derivatives that serve as intermediates for numerous specialized metabolites including cyanogenic glycosides, glucosinolates, and auxins. Aldoxime formation is mainly catalyzed by cytochrome P450 monooxygenases of the 79 family (CYP79s) that can have broad or narrow substrate specificity. Except for SbCYP79A1, aldoxime biosynthetic enzymes in the cereal sorghum (Sorghum bicolor) have not been characterized. This study identified nine CYP79-encoding genes in the genome of sorghum. A phylogenetic analysis of CYP79 showed that SbCYP79A61 formed a subclade with maize ZmCYP79A61, previously characterized to be involved in aldoxime biosynthesis. Functional characterization of this sorghum enzyme using transient expression in Nicotiana benthamiana and stable overexpression in Arabidopsis thaliana revealed that SbCYP79A61 catalyzes the production of phenylacetaldoxime (PAOx) from phenylalanine but, unlike the maize enzyme, displays no detectable activity against tryptophan. Additionally, targeted metabolite analysis after stable isotope feeding assays revealed that PAOx can serve as a precursor of phenylacetic acid (PAA) in sorghum and identified benzyl cyanide as an intermediate of PAOx-derived PAA biosynthesis in both sorghum and maize. Taken together, our results demonstrate that SbCYP79A61 produces PAOx in sorghum and may serve in the biosynthesis of other nitrogen-containing phenylalanine-derived metabolites involved in mediating biotic and abiotic stresses. 
    more » « less