skip to main content


Title: Time Scale Dependence of the Meridional Coherence of the Atlantic Meridional Overturning Circulation
Abstract

The Atlantic Meridional Overturning Circulation (AMOC) variability is suggested to be incoherent between the subpolar and subtropical gyres in the Atlantic on interannual and even decadal time scales, questioning the representativeness of AMOC variability at a single latitude in modern observation and paleoreconstruction. Paleoreconstructions of the Florida Current transport suggest that Florida Current variability is associated with the AMOC on the millennial time scale, but the Rapid Climate Change (RAPID) mooring array suggests a weak correlation between the Florida Current and the AMOC. In this study, we investigate the meridional coherence of AMOC variability and the relationship between the Florida Current variability and the AMOC variability on different time scales in a transient 20,000‐year simulation. We find that with the increase of time scales, the meridional coherence of the AMOC increases. On decadal and longer time scales, the coherent subtropical and subpolar AMOC is caused by the coherent buoyancy forcing in the subpolar gyre. Also, the Florida Current transport is highly correlated with AMOC variability on decadal and longer time scales, suggesting that observations of the Florida Current can be used to indicate AMOC variability on long time scales.

 
more » « less
NSF-PAR ID:
10364467
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
125
Issue:
3
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The latitudinal structure of the Atlantic meridional overturning circulation (AMOC) variability in the North Atlantic is investigated using numerical results from three ocean circulation simulations over the past four to five decades. We show that AMOC variability south of the Labrador Sea (53°N) to 25°N can be decomposed into a latitudinally coherent component and a gyre-opposing component. The latitudinally coherent component contains both decadal and interannual variabilities. The coherent decadal AMOC variability originates in the subpolar region and is reflected by the zonal density gradient in that basin. It is further shown to be linked to persistent North Atlantic Oscillation (NAO) conditions in all three models. The interannual AMOC variability contained in the latitudinally coherent component is shown to be driven by westerlies in the transition region between the subpolar and the subtropical gyre (40°–50°N), through significant responses in Ekman transport. Finally, the gyre-opposing component principally varies on interannual time scales and responds to local wind variability related to the annual NAO. The contribution of these components to the total AMOC variability is latitude-dependent: 1) in the subpolar region, all models show that the latitudinally coherent component dominates AMOC variability on interannual to decadal time scales, with little contribution from the gyre-opposing component, and 2) in the subtropical region, the gyre-opposing component explains a majority of the interannual AMOC variability in two models, while in the other model, the contributions from the coherent and the gyre-opposing components are comparable. These results provide a quantitative decomposition of AMOC variability across latitudes and shed light on the linkage between different AMOC variability components and atmospheric forcing mechanisms. 
    more » « less
  2. Mechanisms driving the North Atlantic meridional overturning circulation (AMOC) variability at low frequency are of central interest for accurate climate predictions. Although the subpolar gyre region has been identified as a preferred place for generating climate time-scale signals, their southward propagation remains under consideration, complicating the interpretation of the observed time series provided by the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array–Western Boundary Time Series (RAPID–MOCHA–WBTS) program. In this study, we aim at disentangling the respective contribution of the local atmospheric forcing from signals of remote origin for the subtropical low-frequency AMOC variability. We analyze for this a set of four ensembles of a regional (20°S–55°N), eddy-resolving (1/12°) North Atlantic oceanic configuration, where surface forcing and open boundary conditions are alternatively permuted from fully varying (realistic) to yearly repeating signals. Their analysis reveals the predominance of local, atmospherically forced signal at interannual time scales (2–10 years), whereas signals imposed by the boundaries are responsible for the decadal (10–30 years) part of the spectrum. Due to this marked time-scale separation, we show that, although the intergyre region exhibits peculiarities, most of the subtropical AMOC variability can be understood as a linear superposition of these two signals. Finally, we find that the decadal-scale, boundary-forced AMOC variability has both northern and southern origins, although the former dominates over the latter, including at the site of the RAPID array (26.5°N).

     
    more » « less
  3. In 1982, Talley and McCartney used the low potential vorticity signature of Labrador Sea Water (LSW) to make the first North Atlantic maps of its properties. Forty years later, our understanding of LSW variability, spreading time scales and importance has deepened. In this review and synthesis article, I showcase recent observational advances in our understanding of how LSW spreads from its formation regions into the Deep Western Boundary Current and southward into the subtropical North Atlantic. I reconcile the fact that decadal variability in LSW formation is reflected in the Deep Western Boundary Current with the fact that LSW formation does not control subpolar overturning strength and discuss hypothesized connections between LSW spreading and decadal Atlantic Meridional Overturning Circulation variability. Ultimately, LSW spreading is of fundamental interest because it is a significant pathway for dissolved gasses such as oxygen and carbon dioxide into the deep ocean. We should hence prioritize adding dissolved gas measurements to standard hydrographic and circulation observations, particularly at targeted western boundary locations.This article is part of a discussion meeting issue ‘Atlantic overturning: new observations and challenges’. 
    more » « less
  4. null (Ed.)
    Abstract. The strength of the Atlantic meridional overturning circulation(AMOC) at 26∘ N has now been continuously measured by the RAPIDarray over the period April 2004–September 2018. This record provides uniqueinsight into the variability of the large-scale ocean circulation,previously only measured by sporadic snapshots of basin-wide transport fromhydrographic sections. The continuous measurements have unveiled strikingvariability on timescales of days to a decade, driven largely bywind forcing, contrasting with previous expectations about a slowly varyingbuoyancy-forced large-scale ocean circulation. However, these measurementswere primarily observed during a warm state of the Atlantic multidecadalvariability (AMV) which has been steadily declining since a peak in2008–2010. In 2013–2015, a period of strong buoyancy forcing by theatmosphere drove intense water-mass transformation in the subpolar NorthAtlantic and provides a unique opportunity to investigate the response ofthe large-scale ocean circulation to buoyancy forcing. Modelling studiessuggest that the AMOC in the subtropics responds to such events with anincrease in overturning transport, after a lag of 3–9 years. At45∘ N, observations suggest that the AMOC may already beincreasing. Examining 26∘ N, we find that the AMOC is no longerweakening, though the recent transport is not above the long-term mean.Extending the record backwards in time at 26∘ N with oceanreanalysis from GloSea5, the transport fluctuations at 26∘ N areconsistent with a 0- to 2-year lag from those at 45∘ N, albeit withlower magnitude. Given the short span of time and anticipated delays in thesignal from the subpolar to subtropical gyres, it is not yet possible todetermine whether the subtropical AMOC strength is recovering nor how theAMOC at 26∘ N responds to intense buoyancy forcing. 
    more » « less
  5. null (Ed.)
    Abstract Decadal sea surface temperature (SST) fluctuations in the North Atlantic Ocean influence climate over adjacent land areas and are a major source of skill in climate predictions. However, the mechanisms underlying decadal SST variability remain to be fully understood. This study isolates the mechanisms driving North Atlantic SST variability on decadal time scales using low-frequency component analysis, which identifies the spatial and temporal structure of low-frequency variability. Based on observations, large ensemble historical simulations, and preindustrial control simulations, we identify a decadal mode of atmosphere–ocean variability in the North Atlantic with a dominant time scale of 13–18 years. Large-scale atmospheric circulation anomalies drive SST anomalies both through contemporaneous air–sea heat fluxes and through delayed ocean circulation changes, the latter involving both the meridional overturning circulation and the horizontal gyre circulation. The decadal SST anomalies alter the atmospheric meridional temperature gradient, leading to a reversal of the initial atmospheric circulation anomaly. The time scale of variability is consistent with westward propagation of baroclinic Rossby waves across the subtropical North Atlantic. The temporal development and spatial pattern of observed decadal SST variability are consistent with the recent observed cooling in the subpolar North Atlantic. This suggests that the recent cold anomaly in the subpolar North Atlantic is, in part, a result of decadal SST variability. 
    more » « less