skip to main content

Title: Fast radio bursts at the dawn of the 2020s
Abstract

Since the discovery of the first fast radio burst (FRB) in 2007, and their confirmation as an abundant extragalactic population in 2013, the study of these sources has expanded at an incredible rate. In our 2019 review on the subject, we presented a growing, but still mysterious, population of FRBs—60 unique sources, 2 repeating FRBs, and only 1 identified host galaxy. However, in only a few short years, new observations and discoveries have given us a wealth of information about these sources. The total FRB population now stands at over 600 published sources, 24 repeaters, and 19 host galaxies. Higher time resolution data, sustained monitoring, and precision localisations have given us insight into repeaters, host galaxies, burst morphology, source activity, progenitor models, and the use of FRBs as cosmological probes. The recent detection of a bright FRB-like burst from the Galactic magnetar SGR 1935 + 2154 provides an important link between FRBs and magnetars. There also continue to be surprising discoveries, like periodic modulation of activity from repeaters and the localisation of one FRB source to a relatively nearby globular cluster associated with the M81 galaxy. In this review, we summarise the exciting observational results from the past few years. more » We also highlight their impact on our understanding of the FRB population and proposed progenitor models. We build on the introduction to FRBs in our earlier review, update our readers on recent results, and discuss interesting avenues for exploration as the field enters a new regime where hundreds to thousands of new FRBs will be discovered and reported each year.

« less
Authors:
; ;
Publication Date:
NSF-PAR ID:
10364488
Journal Name:
The Astronomy and Astrophysics Review
Volume:
30
Issue:
1
ISSN:
0935-4956
Publisher:
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. We summarize our understanding of millisecond radio bursts from an extragalactic population of sources. Fast radio bursts (FRBs) occur at an extraordinary rate, thousands per day over the entire sky with radiation energy densities at the source about ten billion times larger than those from Galactic pulsars. We survey FRB phenomenology, source models and host galaxies, coherent radiation models, and the role of plasma propagation effects in burst detection. The FRB field is guaranteed to be exciting: New telescopes will expand the sample from the current ∼80 unique burst sources (and only a few secure localizations and redshifts) to thousands, with burst localizations that enable host-galaxy redshifts emerging directly from interferometric surveys. ▪ FRBs are now established as an extragalactic phenomenon. ▪ Only a few sources are known to repeat. Despite the failure to redetect other FRBs, they are not inconsistent with all being repeaters. ▪ FRB sources may be new, exotic kinds of objects or known types in extreme circumstances. Many inventive models exist, ranging from alien spacecraft to cosmic strings, but those concerning compact objects and supermassive black holes have gained the most attention. A rapidly rotating magnetar is a promising explanation for FRB 121102 along with themore »persistent source associated with it, but alternative source models are not ruled out for it or other FRBs. ▪ FRBs are powerful tracers of circumsource environments, “missing baryons” in the intergalactic medium (IGM), and dark matter. ▪ The relative contributions of host galaxies and the IGM to propagation effects have yet to be disentangled, so dispersion measure distances have large uncertainties.« less
  2. Abstract

    The first fast radio burst (FRB) to be precisely localized was associated with a luminous persistent radio source (PRS). Recently, a second FRB/PRS association was discovered for another repeating source of FRBs. However, it is not clear what makes FRBs or PRS or how they are related. We compile FRB and PRS properties to consider the population of FRB/PRS sources. We suggest a practical definition for PRS as FRB associations with luminosity greater than 1029erg s−1Hz−1that are not attributed to star formation activity in the host galaxy. We model the probability distribution of the fraction of FRBs with PRS for repeaters and nonrepeaters, showing there is not yet evidence for repeaters to be preferentially associated with PRS. We discuss how FRB/PRS sources may be distinguished by the combination of active repetition and an excess dispersion measure local to the FRB environment. We use CHIME/FRB event statistics to bound the mean per-source repetition rate of FRBs to be between 25 and 440 yr−1. We use this to provide a bound on the density of FRB-emitting sources in the local universe of between 2.2 × 102and 5.2 × 104Gpc−3assuming a pulsar-like beamwidth for FRB emission. This density implies that PRS maymore »comprise as much as 1% of compact, luminous radio sources detected in the local universe. The cosmic density and phenomenology of PRS are similar to that of the newly discovered, off-nuclear “wandering” active galactic nuclei (AGN). We argue that it is likely that some PRS have already been detected and misidentified as AGN.

    « less
  3. ABSTRACT

    The physical properties of fast radio burst (FRB) host galaxies provide important clues towards the nature of FRB sources. The 16 FRB hosts identified thus far span three orders of magnitude in mass and specific star formation rate, implicating a ubiquitously occurring progenitor object. FRBs localized with ∼arcsecond accuracy also enable effective searches for associated multiwavelength and multi-time-scale counterparts, such as the persistent radio source associated with FRB 20121102A. Here we present a localization of the repeating source FRB 20201124A, and its association with a host galaxy (SDSS J050803.48+260338.0, z = 0.098) and persistent radio source. The galaxy is massive (${\sim}3\times 10^{10}\, \text{M}_{\odot }$), star-forming (few solar masses per year), and dusty. Very Large Array and Very Long Baseline Array observations of the persistent radio source measure a luminosity of 1.2 × 1029 erg s−1 Hz−1, and show that is extended on scales ≳50 mas. We associate this radio emission with the ongoing star formation activity in SDSS J050803.48+260338.0. Deeper, high-resolution optical observations are required to better utilize the milliarcsecond-scale localization of FRB 20201124A and determine the origin of the large dispersion measure (150–220 pc cm−3) contributed by the host. SDSS J050803.48+260338.0 is an order of magnitude more massive than any galaxy or stellar system previously associated with a repeating FRB source, butmore »is comparable to the hosts of so far non-repeating FRBs, further building the link between the two apparent populations.

    « less
  4. ABSTRACT

    We report the detection of FRB20191107B with UTMOST radio telescope at a dispersion measure (DM) of 714.9 pc cm−3. The burst consists of three components, the brightest of which has an intrinsic width of only 11.3 μs and a scattering tail with an exponentially decaying time-scale of 21.4 μs measured at 835 MHz. We model the sensitivity of UTMOST and other major fast radio burst (FRB) surveys to such narrow events. We find that $\gt 60{{\ \rm per\, cent}}$ of FRBs like FRB20191107B are being missed, and that a significant population of very narrow FRBs probably exists and remains underrepresented in these surveys. The high DM and small scattering time-scale of FRB20191107B allows us to place an upper limit on the strength of turbulence in the intergalactic medium, quantified as scattering measure (SM), of SMIGM < 8.4 × 10−7 kpc m−20/3. Almost all UTMOST FRBs have full phase information due to real-time voltage capture, which provides us with the largest sample of coherently dedispersed single burst FRBs. Our 10.24 μs time resolution data yields accurately measured FRB scattering time-scales. We combine the UTMOST FRBs with 10 FRBs from the literature and find no obvious evidence for a DM-scattering relation, suggesting that IGM is not the dominant source of scatteringmore »in FRBs. We support the results of previous studies and identify the local environment of the source in the host galaxy as the most likely region that dominates the observed scattering of our FRBs.

    « less
  5. Abstract

    Radio wave scattering can cause severe reductions in detection sensitivity for surveys of Galactic and extragalactic fast (∼ms duration) transients. While Galactic sources like pulsars undergo scattering in the Milky Way interstellar medium (ISM), extragalactic fast radio bursts (FRBs) can also experience scattering in their host galaxies and other galaxies intervening in their lines of sight. We assess Galactic and extragalactic scattering horizons for fast radio transients using a combination of NE2001 to model the dispersion measure and scattering time (τ) contributed by the Galactic disk, and independently constructed electron density models for the Galactic halo and other galaxies’ ISMs and halos that account for different galaxy morphologies, masses, densities, and strengths of turbulence. For source redshifts 0.5 ≤zs≤ 1, an all-sky, isotropic FRB population has simulated values ofτ(1 GHz) ranging from ∼1μs to ∼2 ms (90% confidence, observer frame) that are dominated by host galaxies, althoughτcan be ≫2 ms at low Galactic latitudes. A population atzs= 5 has 0.01 ≲τ≲ 300 ms at 1 GHz (90% confidence), dominated by intervening galaxies. About 20% of these high-redshift FRBs are predicted to haveτ> 5 ms at 1 GHz (observer frame), and ≳40% of FRBs betweenzs∼ 0.5–5 haveτ≳ 1 ms forνmore »800 MHz. Our scattering predictions may be conservative if scattering from circumsource environments is significant, which is possible under specific conditions. The percentage of FRBs selected against from scattering could also be substantially larger than we predict if circumgalactic turbulence causes more small-scale (≪1 au) density fluctuations than observed from nearby halos.

    « less