skip to main content


Title: Constraining deep mantle anisotropy with shear wave splitting measurements: challenges and new measurement strategies
SUMMARY

Determinations of seismic anisotropy, or the dependence of seismic wave velocities on the polarization or propagation direction of the wave, can allow for inferences on the style of deformation and the patterns of flow in the Earth’s interior. While it is relatively straightforward to resolve seismic anisotropy in the uppermost mantle directly beneath a seismic station, measurements of deep mantle anisotropy are more challenging. This is due in large part to the fact that measurements of anisotropy in the deep mantle are typically blurred by the potential influence of upper mantle and/or crustal anisotropy beneath a seismic station. Several shear wave splitting techniques are commonly used that attempt resolve seismic anisotropy in deep mantle by considering the presence of multiple anisotropic layers along a raypath. Examples include source-side S-wave splitting, which is used to characterize anisotropy in the deep upper mantle and mantle transition zone beneath subduction zones, and differential S-ScS and differential SKS-SKKS splitting, which are used to study anisotropy in the D″ layer at the base of the mantle. Each of these methods has a series of assumptions built into them that allow for the consideration of multiple regions of anisotropy. In this work, we systematically assess the accuracy of these assumptions. To do this, we conduct global wavefield modelling using the spectral element solver AxiSEM3D. We compute synthetic seismograms for earth models that include seismic anisotropy at the periods relevant for shear wave splitting measurements (down to 5 s). We apply shear wave splitting algorithms to our synthetic seismograms and analyse whether the assumptions that underpin common measurement techniques are adequate, and whether these techniques can correctly resolve the anisotropy incorporated in our models. Our simulations reveal some inaccuracies and limitations of reliability in various methods. Specifically, explicit corrections for upper mantle anisotropy, which are often used in source-side direct S splitting and S-ScS differential splitting, are typically reliable for the fast polarization direction ϕ but not always for the time lag δt, and their accuracy depends on the details of the upper mantle elastic tensor. We find that several of the assumptions that underpin the S-ScS differential splitting technique are inaccurate under certain conditions, and we suggest modifications to traditional S-ScS differential splitting approaches that lead to improved reliability. We investigate the reliability of differential SKS-SKKS splitting intensity measurements as an indicator for lowermost mantle anisotropy and find that the assumptions built into the splitting intensity formula can break down for strong splitting cases. We suggest some guidelines to ensure the accuracy of SKS-SKKS splitting intensity comparisons that are often used to infer lowermost mantle anisotropy. Finally, we suggest a new strategy to detect lowermost mantle anisotropy which does not rely on explicit upper mantle corrections and use this method to analyse the lowermost mantle beneath east Asia.

 
more » « less
NSF-PAR ID:
10364502
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Volume:
230
Issue:
1
ISSN:
0956-540X
Page Range / eLocation ID:
p. 507-527
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    Iceland represents one of the most well-known examples of hotspot volcanism, but the details of how surface volcanism connects to geodynamic processes in the deep mantle remain poorly understood. Recent work has identified evidence for an ultra-low velocity zone in the lowermost mantle beneath Iceland and argued for a cylindrically symmetric upwelling at the base of a deep mantle plume. This scenario makes a specific prediction about flow and deformation in the lowermost mantle, which can potentially be tested with observations of seismic anisotropy. Here we present an investigation of seismic anisotropy in the lowermost mantle beneath Iceland, using differential shear wave splitting measurements of S–ScS and SKS–SKKS phases. We apply our techniques to waves propagating at multiple azimuths, with the goal of gaining good geographical and azimuthal coverage of the region. Practical limitations imposed by the suboptimal distribution of global seismicity at the relevant distance ranges resulted in a relatively small data set, particularly for S–ScS. Despite this, however, our measurements of ScS splitting due to lowermost mantle anisotropy clearly show a rotation of the fast splitting direction from nearly horizontal for two sets of paths that sample away from the low velocity region (implying VSH > VSV) to nearly vertical for a set of paths that sample directly beneath Iceland (implying VSV > VSH). We also find evidence for sporadic SKS–SKKS discrepancies beneath our study region; while the geographic distribution of discrepant pairs is scattered, those pairs that sample closest to the base of the Iceland plume tend to be discrepant. Our measurements do not uniquely constrain the pattern of mantle flow. However, we carried out simple ray-theoretical forward modelling for a suite of plausible anisotropy mechanisms, including those based on single-crystal elastic tensors, those obtained via effective medium modelling for partial melt scenarios, and those derived from global or regional models of flow and texture development in the deep mantle. These simplified models do not take into account details such as possible transitions in anisotropy mechanism or deformation regime, and test a simplified flow field (vertical flow beneath the plume and horizontal flow outside it) rather than more detailed flow scenarios. Nevertheless, our modelling results demonstrate that our ScS splitting observations are generally consistent with a flow scenario that invokes nearly vertical flow directly beneath the Iceland hotspot, with horizontal flow just outside this region.

     
    more » « less
  2. Shear-wave splitting measurements are commonly used to resolve seismic anisotropy in both the upper and lowermost mantle. Typically, such techniques are applied to SmKS phases that have reflected (m-1) times off the underside of the core-mantle boundary before being recorded. Practical constraints for shear-wave splitting studies include the limited number of suitable phases as well as the large fraction of available data discarded because of poor signal-to-noise ratios (SNRs) or large measurement uncertainties. Array techniques such as beamforming are commonly used in observational seismology to enhance SNRs, but have not been applied before to improve SmKS signal strength and coherency for shear wave splitting studies. Here, we investigate how a beamforming methodology, based on slowness and backazimuth vespagrams to determine the most coherent incoming wave direction, can improve shear-wave splitting measurement confidence intervals. Through the analysis of real and synthetic seismograms, we show that (a) the splitting measurements obtained from the beamformed seismograms (beams) reflect an average of the single-station splitting parameters that contribute to the beam; (b) the beams have (on average) more than twice as large SNRs than the single-station seismograms that contribute to the beam; (c) the increased SNRs allow the reliable measurement of shear wave splitting parameters from beams down to average single-station SNRs of 1.3. Beamforming may thus be helpful to more reliably measure splitting due to upper mantle anisotropy. Moreover, we show that beamforming holds potential to greatly improve detection of lowermost mantle anisotropy by demonstrating differential SKS– SKKS splitting analysis using beamformed USArray data. 
    more » « less
  3. Abstract

    Shear‐wave splitting measurements are commonly used to resolve seismic anisotropy in both the upper and lowermost mantle. Typically, such techniques are applied to SmKS phases that have reflected (m‐1) times off the underside of the core‐mantle boundary before being recorded. Practical constraints for shear‐wave splitting studies include the limited number of suitable phases as well as the large fraction of available data discarded because of poor signal‐to‐noise ratios (SNRs) or large measurement uncertainties. Array techniques such as beamforming are commonly used in observational seismology to enhance SNRs, but have not been applied before to improve SmKS signal strength and coherency for shear wave splitting studies. Here, we investigate how a beamforming methodology, based on slowness and backazimuth vespagrams to determine the most coherent incoming wave direction, can improve shear‐wave splitting measurement confidence intervals. Through the analysis of real and synthetic seismograms, we show that (a) the splitting measurements obtained from the beamformed seismograms (beams) reflect an average of the single‐station splitting parameters that contribute to the beam; (b) the beams have (on average) more than twice as large SNRs than the single‐station seismograms that contribute to the beam; (c) the increased SNRs allow the reliable measurement of shear wave splitting parameters from beams down to average single‐station SNRs of 1.3. Beamforming may thus be helpful to more reliably measure splitting due to upper mantle anisotropy. Moreover, we show that beamforming holds potential to greatly improve detection of lowermost mantle anisotropy by demonstrating differential SKS–SKKS splitting analysis using beamformed USArray data.

     
    more » « less
  4. Abstract

    We investigate seismic anisotropy in the lowermost mantle in the vicinity of the African large low shear velocity province (LLSVP) using observations of differentialSKSSKKSshear‐wave splitting. We use data from 375 permanent and temporary stations in Africa which enable us to map the spatial distribution of the anisotropic regions of the lowermost mantle in unprecedented detail. Our results corroborate previous findings that anisotropy is most clearly observed at the margins of the LLSVP, indicating strong deformation at its border, and they are generally consistent with a mostly isotropic LLSVP interior. We find that most discrepantSKSSKKSmeasurements sample the lowermost mantle close to what is inferred to be the root of the Afar plume. We also identify strongly discrepant splitting in the vicinity of a previously mapped ultralow velocity zone (ULVZ) at the base of the LLSVP, beneath Central Africa. This represents an unusual observation of lowermost mantle anisotropy that is spatially coincident with a ULVZ and may reflect a unique anisotropic mechanism such as alignment of partial melt or the presence of strongly anisotropic magnesiowüstite. We interpret discrepant measurements outside of the LLSVP as likely reflecting a change in flow direction from the horizontal plane to a more vertical direction, which may be caused by deflection at the steep LLSVP border. We propose that our observations of D″ anisotropy associated with the African LLSVP can be explained by a mantle flow regime that maintains passive thermochemical piles with slab‐driven flow and allows for the formation of upwellings at their edges.

     
    more » « less
  5. Abstract

    Little has been seismically imaged through the lithosphere and mantle at rifted margins across the continent‐ocean transition. A 2014–2015 community seismic experiment deployed broadband seismic instruments across the shoreline of the eastern North American rifted margin. Previous shear‐wave splitting along the margin shows several perplexing patterns of anisotropy, and by proxy, mantle flow. Neither margin parallel offshore fast azimuths nor null splitting on the continental coast obviously accord with absolute plate motion, paleo‐spreading, or rift‐induced anisotropy. Splitting measurements, however, offer no depth constraints on anisotropy. Additionally, mantle structure has not yet been imaged in detail across the continent‐ocean transition. We used teleseismicS,SKS,SKKS, andPKSsplitting and differential travel times recorded on ocean‐bottom seismometers, regional seismic networks, and EarthScope Transportable Array stations to conduct joint isotropic/anisotropic tomography across the margin. The velocity model reveals a transition from fast, thick, continental keel to low velocity, thinned lithosphere eastward. Imaged short wavelength velocity anomalies can be largely explained by edge‐driven convection or shear‐driven upwelling. We also find that layered anisotropy is prevalent across the margin. The anisotropic fast polarization is parallel to the margin within the asthenosphere. This suggests margin parallel flow beneath the plate. The lower oceanic lithosphere preserves paleo‐spreading‐parallel anisotropy, while the continental lithosphere has complex anisotropy reflecting several Wilson cycles. These results demonstrate the complex and active nature of a margin which is traditionally considered tectonically inactive.

     
    more » « less