Abstract Understanding the relationship between urban form and structure and spatial inequality of property flood risk has been a longstanding challenge in urban planning and emergency management. Here we explore eight urban form and structure features to explain variability in spatial inequality of property flood risk among 2567 US counties. Using datasets related to human mobility and facility distribution, we identify notable variation in spatial inequality of property flood risk, particularly in coastline and metropolitan counties. The results reveal variations in spatial inequality of property flood risk can be explained based on principal components of development density, economic activity, and centrality and segregation. The classification and regression tree model further demonstrates how these principal components interact and form pathways that explain spatial inequality of property flood risk. The findings underscore the critical role of urban planning in mitigating flood risk inequality, offering valuable insights for crafting integrated strategies as urbanization progresses.
more »
« less
Equality of access and resilience in urban population-facility networks
Abstract While conceptual definitions have provided a foundation for measuring inequality of access and resilience in urban facilities, the challenge for researchers and practitioners alike has been to develop analytical support for urban system development that reduces inequality and improves resilience. Using 30 million large-scale anonymized smartphone-location data, here, we calibrate models to optimize the distribution of facilities and present insights into the interplay between equality and resilience in the development of urban facilities. Results from ten metropolitan counties in the United States reveal that inequality of access to facilities is due to the inconsistency between population and facility distributions, which can be reduced by minimizing total travel costs for urban populations. Resilience increases with more equitable facility distribution by increasing effective embeddedness ranging from 10% to 30% for different facilities and counties. The results imply that resilience and equality are related and should be considered jointly in urban system development.
more »
« less
- Award ID(s):
- 1846069
- PAR ID:
- 10364519
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Urban Sustainability
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2661-8001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sustainable Development Goal 7 of the United Nations is to achieve universal access to clean, modern and affordable electricity by 2030. However, 600 million people in sub-Saharan Africa (SSA) currently do not have access to electricity. As a result of this energy inequality, countries in SSA need to plan electricity systems that provide access in an equitable manner. The research question we explore in this paper is how integrating elicited preferences for equality into an electricity system planning model affects investment decisions regarding technology deployment. Our novel contribution is proposing a framework in the form of a discrete choice experiment and a statistical estimation model to determine decision makers’ preferences for equality. In our study, we find that higher preferences for equality result in an increased deployment of solar diesel mini-grids. These hybrid mini-grids, in turn, drive the carbon emissions intensity of the electricity system fourfold. As such, there is a need for stakeholders in Africa’s energy sector to consider the potential divergence between a carbon-minimizing electrification strategy and equitable electrification.more » « less
-
De_Vita, R; Espinal, X; Laycock, P; Shadura, O (Ed.)The large data volumes expected from the High Luminosity LHC (HL-LHC) present challenges to existing paradigms and facilities for end-user data analysis. Modern cyberinfrastructure tools provide a diverse set of services that can be composed into a system that provides physicists with powerful tools that give them straightforward access to large computing resources, with low barriers to entry. The Coffea-Casa analysis facility (AF) provides an environment for end users enabling the execution of increasingly complex analyses such as those demonstrated by the Analysis Grand Challenge (AGC) and capturing the features that physicists will need for the HL-LHC. We describe the development progress of the Coffea-Casa facility featuring its modularity while demonstrating the ability to port and customize the facility software stack to other locations. The facility also facilitates the support of batch systems while staying Kubernetes-native. We present the evolved architecture of the facility, such as the integration of advanced data delivery services (e.g. ServiceX) and making data caching services (e.g. XCache) available to end users of the facility. We also highlight the composability of modern cyberinfrastructure tools. To enable machine learning pipelines at coffee-casa analysis facilities, a set of industry ML solutions adopted for HEP columnar analysis were integrated on top of existing facility services. These services also feature transparent access for user workflows to GPUs available at a facility via inference servers while using Kubernetes as enabling technology.more » « less
-
Abstract Natural hazards cause disruptions in access to critical facilities, such as grocery stores, impeding residents’ ability to prepare for and cope with hardships during the disaster and recovery; however, disrupted access to critical facilities is not equal for all residents of a community. In this study, we examine disparate access to grocery stores in the context of the 2017 Hurricane Harvey in Harris County, Texas. We utilized high-resolution location-based datasets in implementing spatial network analysis and dynamic clustering techniques to uncover the overall disparate access to grocery stores for socially vulnerable populations during different phases of the disaster. Three access indicators are examined using network-centric measures: number of unique stores visited, average trip time to stores, and average distance to stores. These access indicators help us capture three dimensions of access: redundancy , rapidity , and proximity . The findings show the insufficiency of focusing merely on the distributional factors, such as location in a food desert and number of facilities, to capture the disparities in access, especially during the preparation and impact/short-term recovery periods. Furthermore, the characterization of access by considering combinations of access indicators reveals that flooding disproportionally affects socially vulnerable populations. High-income areas have better access during the preparation period as they are able to visit a greater number of stores and commute farther distances to obtain supplies. The conclusions of this study have important implications for urban development (facility distribution), emergency management, and resource allocation by identifying areas most vulnerable to disproportionate access impacts using more equity-focused and data-driven approaches.more » « less
-
Abstract Background Access to healthcare is imperative to health equity and well-being. Geographic access to healthcare can be modeled using spatial datasets on local context, together with the distribution of existing health facilities and populations. Several population datasets are currently available, but their impact on accessibility analyses is unknown. In this study, we model the geographic accessibility of public health facilities at 100-meter resolution in sub-Saharan Africa and evaluate six of the most popular gridded population datasets for their impact on coverage statistics at different administrative levels. Methods Travel time to nearest health facilities was calculated by overlaying health facility coordinates on top of a friction raster accounting for roads, landcover, and physical barriers. We then intersected six different gridded population datasets with our travel time estimates to determine accessibility coverages within various travel time thresholds (i.e., 30, 60, 90, 120, 150, and 180-min). Results Here we show that differences in accessibility coverage can exceed 70% at the sub-national level, based on a one-hour travel time threshold. The differences are most notable in large and sparsely populated administrative units and dramatically shape patterns of healthcare accessibility at national and sub-national levels. Conclusions The results of this study show how valuable and critical a comparative analysis between population datasets is for the derivation of coverage statistics that inform local policies and monitor global targets. Large differences exist between the datasets and the results underscore an essential source of uncertainty in accessibility analyses that should be systematically assessed.more » « less