skip to main content


Title: The Lick Observatory Supernova Search follow-up program: photometry data release of 70 SESNe
ABSTRACT

We present BVRI and unfiltered (Clear) light curves of 70 stripped-envelope supernovae (SESNe), observed between 2003 and 2020, from the Lick Observatory Supernova Search follow-up program. Our SESN sample consists of 19 spectroscopically normal SNe Ib, 2 peculiar SNe Ib, six SNe Ibn, 14 normal SNe Ic, 1 peculiar SN Ic, 10 SNe Ic-BL, 15 SNe IIb, 1 ambiguous SN IIb/Ib/c, and 2 superluminous SNe. Our follow-up photometry has (on a per-SN basis) a mean coverage of 81 photometric points (median of 58 points) and a mean cadence of 3.6 d (median of 1.2 d). From our full sample, a subset of 38 SNe have pre-maximum coverage in at least one passband, allowing for the peak brightness of each SN in this subset to be quantitatively determined. We describe our data collection and processing techniques, with emphasis toward our automated photometry pipeline, from which we derive publicly available data products to enable and encourage further study by the community. Using these data products, we derive host-galaxy extinction values through the empirical colour evolution relationship and, for the first time, produce accurate rise-time measurements for a large sample of SESNe in both optical and infrared passbands. By modelling multiband light curves, we find that SNe Ic tend to have lower ejecta masses and lower ejecta velocities than SNe Ib and IIb, but higher 56Ni masses.

 
more » « less
NSF-PAR ID:
10364525
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
512
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 3195-3214
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present BVRI and unfiltered light curves of 93 Type Ia supernovae (SNe Ia) from the Lick Observatory Supernova Search (LOSS) follow-up program conducted between 2005 and 2018. Our sample consists of 78 spectroscopically normal SNe Ia, with the remainder divided between distinct subclasses (3 SN 1991bg-like, 3 SN 1991T-like, 4 SNe Iax, 2 peculiar, and 3 super-Chandrasekhar events), and has a median redshift of 0.0192. The SNe in our sample have a median coverage of 16 photometric epochs at a cadence of 5.4 d, and the median first observed epoch is ∼4.6 d before maximum B-band light. We describe how the SNe in our sample are discovered, observed, and processed, and we compare the results from our newly developed automated photometry pipeline to those from the previous processing pipeline used by LOSS. After investigating potential biases, we derive a final systematic uncertainty of 0.03 mag in BVRI for our data set. We perform an analysis of our light curves with particular focus on using template fitting to measure the parameters that are useful in standardizing SNe Ia as distance indicators. All of the data are available to the community, and we encourage future studies to incorporate our light curves in their analyses.

     
    more » « less
  2. Abstract SN 2018ivc is an unusual Type II supernova (SN II). It is a variant of SNe IIL, which might represent a transitional case between SNe IIP with a massive H-rich envelope and SNe IIb with only a small amount of the H-rich envelope. However, SN 2018ivc shows an optical light-curve evolution more complicated than that of canonical SNe IIL. In this paper, we present the results of prompt follow-up observations of SN 2018ivc with the Atacama Large Millimeter/submillimeter Array. Its synchrotron emission is similar to that of SN IIb 1993J, suggesting that it is intrinsically an SN IIb–like explosion of an He star with a modest (∼0.5–1 M ⊙ ) extended H-rich envelope. Its radio, optical, and X-ray light curves are explained primarily by the interaction between the SN ejecta and the circumstellar material (CSM); we thus suggest that it is a rare example (and the first involving the “canonical” SN IIb ejecta) for which the multiwavelength emission is powered mainly by the SN–CSM interaction. The inner CSM density, reflecting the progenitor activity in the final decade, is comparable to that of SN IIb 2013cu, which shows a flash spectral feature. The outer CSM density, and therefore the mass-loss rate in the final ∼200 yr, is higher than that of SN 1993J by a factor of ∼5. We suggest that SN 2018ivc represents a missing link between SNe IIP and SNe IIb/Ib/Ic in the binary evolution scenario. 
    more » « less
  3. Abstract

    We present a sample of Type Icn supernovae (SNe Icn), a newly discovered class of transients characterized by their interaction with H- and He-poor circumstellar material (CSM). This sample is the largest collection of SNe Icn to date and includes observations of two published objects (SN 2019hgp and SN 2021csp) and two objects not yet published in the literature (SN 2019jc and SN 2021ckj). The SNe Icn display a range of peak luminosities, rise times, and decline rates, as well as diverse late-time spectral features. To investigate their explosion and progenitor properties, we fit their bolometric light curves to a semianalytical model consisting of luminosity inputs from circumstellar interaction and radioactive decay of56Ni. We infer low ejecta masses (≲2M) and56Ni masses (≲0.04M) from the light curves, suggesting that normal stripped-envelope supernova (SESN) explosions within a dense CSM cannot be the underlying mechanism powering SNe Icn. Additionally, we find that an estimate of the star formation rate density at the location of SN 2019jc lies at the lower end of a distribution of SESNe, in conflict with a massive star progenitor of this object. Based on its estimated ejecta mass,56Ni mass, and explosion site properties, we suggest a low-mass, ultra-stripped star as the progenitor of SN 2019jc. For other SNe Icn, we suggest that a Wolf–Rayet star progenitor may better explain their observed properties. This study demonstrates that multiple progenitor channels may produce SNe Icn and other interaction-powered transients.

     
    more » « less
  4. Abstract

    We present observations of a peculiar hydrogen- and helium-poor stripped-envelope (SE) supernova (SN) 2020wnt, primarily in the optical and near-infrared (near-IR). Its peak absolute bolometric magnitude of −20.9 mag (Lbol, peak= (6.8 ± 0.3) × 1043erg s−1) and a rise time of 69 days are reminiscent of hydrogen-poor superluminous SNe (SLSNe I), luminous transients potentially powered by spinning-down magnetars. Before the main peak, there is a brief peak lasting <10 days post explosion, likely caused by interaction with circumstellar medium (CSM) ejected ∼years before the SN explosion. The optical spectra near peak lack a hot continuum and Oiiabsorptions, which are signs of heating from a central engine; they quantitatively resemble those of radioactivity-powered hydrogen/helium-poor Type Ic SESNe. At ∼1 yr after peak, nebular spectra reveal a blue pseudo-continuum and narrow Oirecombination lines associated with magnetar heating. Radio observations rule out strong CSM interactions as the dominant energy source at +266 days post peak. Near-IR observations at +200–300 days reveal carbon monoxide and dust formation, which causes a dramatic optical light-curve dip. Pair-instability explosion models predict slow light curve and spectral features incompatible with observations. SN 2020wnt is best explained as a magnetar-powered core-collapse explosion of a 28Mpre-SN star. The explosion kinetic energy is significantly larger than the magnetar energy at peak, effectively concealing the magnetar-heated inner ejecta until well after peak. SN 2020wnt falls into a continuum between normal SNe Ic and SLSNe I, and demonstrates that optical spectra at peak alone cannot rule out the presence of a central engine.

     
    more » « less
  5. Abstract We present observations of three core-collapse supernovae (CCSNe) in elliptical hosts, detected by the Zwicky Transient Facility Bright Transient Survey (BTS). SN 2019ape is a SN Ic that exploded in the main body of a typical elliptical galaxy. Its properties are consistent with an explosion of a regular SN Ic progenitor. A secondary g -band light-curve peak could indicate interaction of the ejecta with circumstellar material (CSM). An H α -emitting source at the explosion site suggests a residual local star formation origin. SN 2018fsh and SN 2020uik are SNe II which exploded in the outskirts of elliptical galaxies. SN 2020uik shows typical spectra for SNe II, while SN 2018fsh shows a boxy nebular H α profile, a signature of CSM interaction. We combine these 3 SNe with 7 events from the literature and analyze their hosts as a sample. We present multi-wavelength photometry of the hosts, and compare this to archival photometry of all BTS hosts. Using the spectroscopically complete BTS, we conclude that 0.3 % − 0.1 + 0.3 of all CCSNe occur in elliptical galaxies. We derive star formation rates and stellar masses for the host galaxies and compare them to the properties of other SN hosts. We show that CCSNe in ellipticals have larger physical separations from their hosts compared to SNe Ia in elliptical galaxies, and discuss implications for star-forming activity in elliptical galaxies. 
    more » « less