skip to main content

Title: Snails across Scales: Local and Global Phase-mixing Structures as Probes of the Past and Future Milky Way

Signatures of vertical disequilibrium have been observed across the Milky Way’s (MW’s) disk. These signatures manifest locally as unmixed phase spirals inzvzspace (“snails-in-phase”), and globally as nonzero meanzandvz, wrapping around the disk into physical spirals in thexyplane (“snails-in-space”). We explore the connection between these local and global spirals through the example of a satellite perturbing a test-particle MW-like disk. We anticipate our results to broadly apply to any vertical perturbation. Using azvzasymmetry metric, we demonstrate that in test-particle simulations: (a) multiple local phase-spiral morphologies appear when stars are binned by azimuthal actionJϕ, excited by a single event (in our case, a satellite disk crossing); (b) these distinct phase spirals are traced back to distinct disk locations; and (c) they are excited at distinct times. Thus, local phase spirals offer a global view of the MW’s perturbation history from multiple perspectives. Using a toy model for a Sagittarius (Sgr)–like satellite crossing the disk, we show that the full interaction takes place on timescales comparable to orbital periods of disk stars withinR≲ 10 kpc. Hence such perturbations have widespread influence, which peaks in distinct regions of the disk at different times. This leads us to examine the ongoing MW–Sgr interaction. While more » Sgr has not yet crossed the disk (currently,zSgr≈ −6 kpc,vz,Sgr≈ 210 km s−1), we demonstrate that the peak of the impact has already passed. Sgr’s pull over the past 150 Myr creates a globalvzsignature with amplitude ∝MSgr, which might be detectable in future spectroscopic surveys.

« less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Article No. 80
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Galactic disks are highly responsive systems that often undergo external perturbations and subsequent collisionless equilibration, predominantly via phase mixing. We use linear perturbation theory to study the response of infinite isothermal slab analogs of disks to perturbations with diverse spatiotemporal characteristics. Without self-gravity of the response, the dominant Fourier modes that get excited in a disk are the bending and breathing modes, which, due to vertical phase mixing, trigger local phase-space spirals that are one- and two-armed, respectively. We demonstrate how the lateral streaming motion of slab stars causes phase spirals to damp out over time. The ratio of the perturbation timescale (τP) to the local, vertical oscillation time (τz) ultimately decides which of the two modes is excited. Faster, more impulsive (τP<τz) and slower, more adiabatic (τP>τz) perturbations excite stronger breathing and bending modes, respectively, although the response to very slow perturbations is exponentially suppressed. For encounters with satellite galaxies, this translates to more distant and more perpendicular encounters triggering stronger bending modes. We compute the direct response of the Milky Way disk to several of its satellite galaxies and find that recent encounters with all of them excite bending modes in the solar neighborhood. The encounter withmore »Sagittarius triggers a response that is at least 1–2 orders of magnitude larger than that due to any other satellite, including the Large Magellanic Cloud. We briefly discuss how ignoring the presence of a dark matter halo and the self-gravity of the response might impact our conclusions.

    « less

    Gaia Data Release 2 revealed that the Milky Way contains significant indications of departures from equilibrium in the form of asymmetric features in the phase space density of stars in the Solar neighbourhood. One such feature is the z–vz phase spiral, interpreted as the response of the disc to the influence of a perturbation perpendicular to the disc plane, which could be external (e.g. a satellite) or internal (e.g. the bar or spiral arms). In this work, we use Gaia Data Release 3 to dissect the phase spiral by dividing the local data set into groups with similar azimuthal actions, Jϕ, and conjugate angles, θϕ, which selects stars on similar orbits and at similar orbital phases, thus having experienced similar perturbations in the past. These divisions allow us to explore areas of the Galactic disc larger than the surveyed region. The separation improves the clarity of the z–vz phase spiral and exposes changes to its morphology across the different action-angle groups. In particular, we discover a transition to two armed ‘breathing spirals’ in the inner Milky Way. We conclude that the local data contain signatures of not one, but multiple perturbations with the prospect to use their distinct propertiesmore »to infer the properties of the interactions that caused them.

    « less
  3. Abstract

    We use a recent census of the Milky Way (MW) satellite galaxy population to constrain the lifetime of particle dark matter (DM). We consider two-body decaying dark matter (DDM) in which a heavy DM particle decays with lifetimeτcomparable to the age of the universe to a lighter DM particle (with mass splittingϵ) and to a dark radiation species. These decays impart a characteristic “kick velocity,”Vkick=ϵc, on the DM daughter particles, significantly depleting the DM content of low-mass subhalos and making them more susceptible to tidal disruption. We fit the suppression of the present-day DDM subhalo mass function (SHMF) as a function ofτandVkickusing a suite of high-resolution zoom-in simulations of MW-mass halos, and we validate this model on new DDM simulations of systems specifically chosen to resemble the MW. We implement our DDM SHMF predictions in a forward model that incorporates inhomogeneities in the spatial distribution and detectability of MW satellites and uncertainties in the mapping between galaxies and DM halos, the properties of the MW system, and the disruption of subhalos by the MW disk using an empirical model for the galaxy–halo connection. By comparing to the observed MW satellite population, we conservatively exclude DDM models withτ< 18 Gyrmore »(29 Gyr) forVkick= 20 kms−1(40 kms−1) at 95% confidence. These constraints are among the most stringent and robust small-scale structure limits on the DM particle lifetime and strongly disfavor DDM models that have been proposed to alleviate the Hubble andS8tensions.

    « less

    Stars born on near-circular orbits in spiral galaxies can subsequently migrate to different orbits due to interactions with non-axisymmetric disturbances within the disc such as bars or spiral arms. This paper extends the study of migration to examine the role of external influences using the example of the interaction of the Sagittarius dwarf galaxy (Sgr) with the Milky Way (MW). We first make impulse approximation estimates to characterize the influence of Sgr disc passages. The tidal forcing from Sgr can produce changes in both guiding radius ΔRg and orbital eccentricity, as quantified by the maximum radial excursion ΔRmax. These changes follow a quadrupole-like pattern across the face of the disc, with amplitude increasing with Galactocentric radius. We next examine a collisionless N-body simulation of a Sgr-like satellite interacting with an MW-like galaxy and find that Sgr’s influence in the outer disc dominates the secular evolution of orbits between disc passages. Finally, we use the same simulation to explore possible observable signatures of Sgr-induced migration by painting the simulation with different age stellar populations. We find that following Sgr disc passages, the migration it induces manifests within an annulus as an approximate quadrupole in azimuthal metallicity variations (δ[Fe/H]), along withmore »systematic variations in orbital eccentricity, ΔRmax. These systematic variations can persist for several rotational periods. We conclude that this combination of signatures may be used to distinguish between the different migration mechanisms shaping the chemical abundance patterns of the MW’s thin disc.

    « less
  5. Abstract A significant fraction of Milky Way (MW) satellites exhibit phase-space properties consistent with a coherent orbital plane. Using tailored N -body simulations of a spherical MW halo that recently captured a massive (1.8 × 10 11 M ⊙ ) LMC-like satellite, we identify the physical mechanisms that may enhance the clustering of orbital poles of objects orbiting the MW. The LMC deviates the orbital poles of MW dark matter particles from the present-day random distribution. Instead, the orbital poles of particles beyond R ≈ 50 kpc cluster near the present-day orbital pole of the LMC along a sinusoidal pattern across the sky. The density of orbital poles is enhanced near the LMC by a factor δ ρ max = 30% (50%) with respect to underdense regions and δ ρ iso = 15% (30%) relative to the isolated MW simulation (no LMC) between 50 and 150 kpc (150–300 kpc). The clustering appears after the LMC’s pericenter (≈50 Myr ago, 49 kpc) and lasts for at least 1 Gyr. Clustering occurs because of three effects: (1) the LMC shifts the velocity and position of the central density of the MW’s halo and disk; (2) the dark matter dynamical friction wake andmore »collective response induced by the LMC change the kinematics of particles; (3) observations of particles selected within spatial planes suffer from a bias, such that measuring orbital poles in a great circle in the sky enhances the probability of their orbital poles being clustered. This scenario should be ubiquitous in hosts that recently captured a massive satellite (at least ≈1:10 mass ratio), causing the clustering of orbital poles of halo tracers.« less