skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: A different type of disaster response digital volunteer: Looking behind the scenes to reveal coordinating actions of disaster knowledge workers
Abstract

Researchers have established the prominent role digital volunteers play during crises and disasters. From self‐organizing to annotating public data, these volunteers are now a fixture in disaster research. However, we know much less about how these volunteers function, behind the public scene, when using private social media as a disaster unfolds and people need to be rescued. This qualitative study identified the emergent helping roles along with the skillsets and abilities that helped volunteers perform these behind‐the‐scene roles during the Hurricane Harvey flooding in 2017. Using in‐depth interviews along with captured images in private social media, we find these volunteers resembled organizational knowledge workers. We identify nine specific communicating and coordinating actions that these disaster knowledge workers performed. The contributions of these findings centre on implications for disaster response and management.

 
more » « less
NSF-PAR ID:
10364567
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Contingencies and Crisis Management
Volume:
29
Issue:
2
ISSN:
0966-0879
Format(s):
Medium: X Size: p. 116-130
Size(s):
p. 116-130
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Delivering the right information to the right people in a timely manner can greatly improve outcomes and save lives in emergency response. A communication framework that flexibly and efficiently brings victims, volunteers, and first responders together for timely assistance can be very helpful. With the burden of more frequent and intense disaster situations and first responder resources stretched thin, people increasingly depend on social media for communicating vital information. This paper proposes ONSIDE, a framework for coordination of disaster response leveraging social media, integrating it with Information-Centric dissemination for timely and relevant dissemination. We use a graph-based pub/sub namespace that captures the complex hierarchy of the incident management roles. Regular citizens and volunteers using social media may not know of or have access to the full namespace. Thus, we utilize a social media engine (SME) to identify disaster-related social media posts and then automatically map them to the right name(s) in near-real-time. Using NLP and classification techniques, we direct the posts to appropriate first responder(s) that can help with the posted issue. A major challenge for classifying social media in real-time is the labeling effort for model training. Furthermore, as disasters hits, there may be not enough data points available for labeling, and there may be concept drift in the content of the posts over time. To address these issues, our SME employs stream-based active learning methods, adapting as social media posts come in. Preliminary evaluation results show the proposed solution can be effective. 
    more » « less
  2. Social media platforms are playing increasingly critical roles in disaster response and rescue operations. During emergencies, users can post rescue requests along with their addresses on social media, while volunteers can search for those messages and send help. However, efficiently leveraging social media in rescue operations remains challenging because of the lack of tools to identify rescue request messages on social media automatically and rapidly. Analyzing social media data, such as Twitter data, relies heavily on Natural Language Processing (NLP) algorithms to extract information from texts. The introduction of bidirectional transformers models, such as the Bidirectional Encoder Representations from Transformers (BERT) model, has significantly outperformed previous NLP models in numerous text analysis tasks, providing new opportunities to precisely understand and classify social media data for diverse applications. This study developed and compared ten VictimFinder models for identifying rescue request tweets, three based on milestone NLP algorithms and seven BERT-based. A total of 3191 manually labeled disaster-related tweets posted during 2017 Hurricane Harvey were used as the training and testing datasets. We evaluated the performance of each model by classification accuracy, computation cost, and model stability. Experiment results show that all BERT-based models have significantly increased the accuracy of categorizing rescue-related tweets. The best model for identifying rescue request tweets is a customized BERT-based model with a Convolutional Neural Network (CNN) classifier. Its F1-score is 0.919, which outperforms the baseline model by 10.6%. The developed models can promote social media use for rescue operations in future disaster events. 
    more » « less
  3. After Hurricane Katrina decimated the Gulf Coast in 2005, thousands of Latinx immigrants arrived in the region to work in reconstruction, one case of the growing and global phenomenon of disaster migration. Drawing on newspaper content analysis, in-depth interviews with immigrant service providers, and archival materials from Mississippi for the years surrounding Hurricane Katrina (2003-2009), we ask what reception these disaster migrants encountered upon arrival and how that reception changed as they settled permanently in the state. We find that public discourse about immigrants became markedly more positive when disaster migrants arrived en masse, with the media and public characterizing immigrants as valuable, hard workers. Negative characterizations shifted to portray immigrants as drains on public resources. However, these changes were temporary. By 2009, public debate about immigrants reverted to pre-disaster trends with only one exception. Across our study period, we find a steady rise in claims that immigrants faced racism and discrimination. Our findings suggest that disasters may briefly transform the social and cultural bases of material inequalities but are unlikely to produce lasting change. 
    more » « less
  4. Widespread disasters can overload official agencies’ capacity to provide assistance, and often citizen-led groups emerge to assist with disaster response. As social media platforms have expanded, emergent rescue groups have many ways to harness network and mobile tools to coordinate actions and help fellow citizens. This study used semi-structured interviews and photo elicitation techniques to better understand how wide-scale rescues occurred during the 2017 Hurricane Harvey flooding in the Greater Houston, Texas USA area. We found that citizens used diverse apps and social media-related platforms during these rescues and that they played one of three roles: rescuer, dispatcher, or information compiler. The key social media coordination challenges these rescuers faced were incomplete feedback loops, unclear prioritization, and communication overload. This work-in-progress paper contributes to the field of crisis and disaster response research by sharing the nuances in how citizens use social media to respond to calls for help from flooding victims. 
    more » « less
  5. The increasing popularity of multimedia messages shared through public or private social media spills into diverse information dissemination contexts. To date, public social media has been explored as a potential alert system during natural disasters, but high levels of noise (i.e., non-relevant content) present challenges in both understanding social experiences of a disaster and in facilitating disaster recovery. This study builds on current research by uniquely using social media data, collected in the field through qualitative interviews, to create a supervised machine learning model. Collected data represents rescuers and rescuees during the 2017 Hurricane Harvey. Preliminary findings indicate a 99% accuracy in classifying data between signal and noise for signal-to-noise ratios (SNR) of 1:1, 1:2, 1:4, and 1:8. We also find 99% accuracy in classification between respondent types (volunteer rescuer, official rescuer, and rescuee). We furthermore compare human and machine coded attributes, finding that Google Vision API is a more reliable source of detecting attributes for the training set. 
    more » « less