skip to main content

Title: Instability from high-order resonant chains in wide-separation massive planet systems

Diversity in the properties of exoplanetary systems arises, in part, from dynamical evolution that occurs after planet formation. We use numerical integrations to explore the relative role of secular and resonant dynamics in the long-term evolution of model planetary systems, made up of three equal mass giant planets on initially eccentric orbits. The range of separations studied is dominated by secular processes, but intersects chains of high-order mean-motion resonances. Over time-scales of 108 orbits, the secular evolution of the simulated systems is predominantly regular. High-order resonant chains, however, can be a significant source of angular momentum deficit (AMD), leading to instability. Using a time series analysis based on a Hilbert transform, we associate instability with broad islands of chaotic evolution. Previous work has suggested that first-order resonances could modify the AMD of nominally secular systems and facilitate secular chaos. We find that higher order resonances, when present in chains, can have similar impacts.

Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 2750-2757
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this

    Secular oscillations in multiplanet systems can drive chaotic evolution of a small inner body through non-linear resonant perturbations. This ‘secular chaos’ readily pushes the inner body to an extreme eccentricity, triggering tidal interactions or collision with the central star. We present a numerical study of secular chaos in systems with two planets and test particles using the ring-averaging method, with emphasis on the relationship between the planets’ properties and the time-scale and efficiency of chaotic diffusion. We find that secular chaos can excite extreme eccentricities on time-scales spanning several orders of magnitude in a given system. We apply our results to the evolution of planetary systems around white dwarfs (WDs), specifically the tidal disruption and high-eccentricity migration of planetesimals and planets. We find that secular chaos in a planetesimal belt driven by large (≳10 M⊕), distant ($\gtrsim 10 \, \mathrm{au}$) planets can sustain metal accretion on to a WD over Gyr time-scales. We constrain the total mass of planetesimals initially present within the chaotic zone by requiring that the predicted mass delivery rate to the Roche limit be consistent with the observed metal accretion rates of WDs with atmospheric pollution throughout the cooling sequence. Based on the occurrence ofmore »long-period exoplanets and exo-asteroid belts, we conclude that secular chaos can be a significant (perhaps dominant) channel for polluting solitary WDs. Secular chaos can also produce short-period planets and planetesimals around WDs in concert with various circularization mechanisms. We discuss prospects for detecting exoplanets driving secular chaos around WDs using direct imaging and microlensing.

    « less
  2. The Geological Orrery is a network of geological records of orbitally paced climate designed to address the inherent limitations of solutions for planetary orbits beyond 60 million years ago due to the chaotic nature of Solar System motion. We use results from two scientific coring experiments in Early Mesozoic continental strata: the Newark Basin Coring Project and the Colorado Plateau Coring Project. We precisely and accurately resolve the secular fundamental frequencies of precession of perihelion of the inner planets and Jupiter for the Late Triassic and Early Jurassic epochs (223–199 million years ago) using the lacustrine record of orbital pacing tuned only to one frequency (1/405,000 years) as a geological interferometer. Excepting Jupiter’s, these frequencies differ significantly from present values as determined using three independent techniques yielding practically the same results. Estimates for the precession of perihelion of the inner planets are robust, reflecting a zircon U–Pb-based age model and internal checks based on the overdetermined origins of the geologically measured frequencies. Furthermore, although not indicative of a correct solution, one numerical solution closely matches the Geological Orrery, with a very low probability of being due to chance. To determine the secular fundamental frequencies of the precession of the nodesmore »of the planets and the important secular resonances with the precession of perihelion, a contemporaneous high-latitude geological archive recording obliquity pacing of climate is needed. These results form a proof of concept of the Geological Orrery and lay out an empirical framework to map the chaotic evolution of the Solar System.

    « less
  3. Abstract There have been 77 TNOs discovered to be librating in the distant trans-Neptunian resonances (beyond the 2:1 resonance, at semimajor axes greater than 47.7 au) in four well-characterized surveys: the Outer Solar System Origins Survey (OSSOS) and three similar prior surveys. Here, we use the OSSOS Survey Simulator to measure their intrinsic orbital distributions using an empirical parameterized model. Because many of the resonances had only one or very few detections, j : k resonant objects were grouped by k in order to have a better basis for comparison between models and reality. We also use the Survey Simulator to constrain their absolute populations, finding that they are much larger than predicted by any published Neptune migration model to date; we also find population ratios that are inconsistent with published models, presenting a challenge for future Kuiper Belt emplacement models. The estimated population ratios between these resonances are largely consistent with scattering–sticking predictions, though further discoveries of resonant TNOs with high-precision orbits will be needed to determine whether scattering–sticking can explain the entire distant resonant population or not.
  4. Abstract Compact nonresonant systems of sub-Jovian planets are the most common outcome of the planet formation process. Despite exhibiting broad overall diversity, these planets also display dramatic signatures of intrasystem uniformity in their masses, radii, and orbital spacings. Although the details of their formation and early evolution are poorly known, sub-Jovian planets are expected to emerge from their natal nebulae as multiresonant chains, owing to planet–disk interactions. Within the context of this scenario, the architectures of observed exoplanet systems can be broadly replicated if resonances are disrupted through postnebular dynamical instabilities. Here, we generate an ad hoc sample of resonant chains and use a suite of N -body simulations to show that instabilities can not only reproduce the observed period ratio distribution, but that the resulting collisions also modify the mass uniformity in a way that is consistent with the data. Furthermore, we demonstrate that primordial mass uniformity, motivated by the sample of resonant chains coupled with dynamical sculpting, naturally generates uniformity in orbital period spacing similar to what is observed. Finally, we find that almost all collisions lead to perfect mergers, but some form of postinstability damping is likely needed to fully account for the present-day dynamically cold architecturesmore »of sub-Jovian exoplanets.« less
  5. Celletti, Alessandra ; Beaugé, Cristian ; Galeş, Cătălin ; Lemaître, Anne (Ed.)
    Perturbative analyses of planetary resonances commonly predict singularities and/or divergences of resonance widths at very low and very high eccentricities. We have recently re-examined the nature of these divergences using non-perturbative numerical analyses, making use of Poincaré sections but from a different perspective relative to previous implementations of this method. This perspective reveals fine structure of resonances which otherwise remains hidden in conventional approaches, including analytical, semi-analytical and numerical-averaging approaches based on the critical resonant angle. At low eccentricity, first order resonances do not have diverging widths but have two asymmetric branches leading away from the nominal resonance location. A sequence of structures called ``low-eccentricity resonant bridges" connecting neighboring resonances is revealed. At planet-grazing eccentricity, the true resonance width is non-divergent. At higher eccentricities, the new results reveal hitherto unknown resonant structures and show that these parameter regions have a loss of some -- though not necessarily entire -- resonance libration zones to chaos. The chaos at high eccentricities was previously attributed to the overlap of neighboring resonances. The new results reveal the additional role of bifurcations and co-existence of phase-shifted resonance zones at higher eccentricities. By employing a geometric point of view, we relate the high eccentricity phase spacemore »structures and their transitions to the shapes of resonant orbits in the rotating frame. We outline some directions for future research to advance understanding of the dynamics of mean motion resonances.« less