Formaldehyde is a known human carcinogen and an important indoor and outdoor air pollutant. However, current strategies for formaldehyde measurement, such as chromatographic and optical techniques, are expensive and labor intensive. Low-cost gas sensors have been emerging to provide effective measurement of air pollutants. In this study, we evaluated eight low-cost electrochemical formaldehyde sensors (SFA30, Sensirion®, Staefa, Switzerland) in the laboratory with a broadband cavity-enhanced absorption spectroscopy as the reference instrument. As a group, the sensors exhibited good linearity of response (R2 > 0.95), low limit of detection (11.3 ± 2.07 ppb), good accuracy (3.96 ± 0.33 ppb and 6.2 ± 0.3% N), acceptable repeatability (3.46% averaged coefficient of variation), reasonably fast response (131–439 s) and moderate inter-sensor variability (0.551 intraclass correlation coefficient) over the formaldehyde concentration range of 0–76 ppb. We also systematically investigated the effects of temperature and relative humidity on sensor response, and the results showed that formaldehyde concentration was the most important contributor to sensor response, followed by temperature, and relative humidity. The results suggest the feasibility of using this low-cost electrochemical sensor to measure formaldehyde concentrations at relevant concentration ranges in indoor and outdoor environments. 
                        more » 
                        « less   
                    
                            
                            Repeatability of adaptive traits among ethnic Tibetan highlanders
                        
                    
    
            Abstract ObjectivesConnecting traits to biological pathways and genes relies on stable observations. Researchers typically determine traits once, expecting careful study protocols to yield measurements free of noise. This report examines that expectation with test–retest repeatability analyses for traits used regularly in research on adaptation to high‐altitude hypoxia, often in settings without climate control. MethodsTwo hundred ninety‐one ethnic Tibetan women residing from 3500 to 4200 m in Upper Mustang District, Nepal, provided three observations of hemoglobin concentration, percent of oxygen saturation of hemoglobin, and pulse by noninvasive pulse oximetry under conditions designed to minimize environmental noise. ResultsHigh‐intraclass correlation coefficients and low within‐subject coefficients of variation reflected consistent measurements. Percent of oxygen saturation had the highest intraclass correlation coefficient and the smallest within‐subject coefficient of variability; measurement noise occurred mainly in the lower values. Hemoglobin concentration and pulse presented slightly higher within‐subject coefficients of variation; measurement noise occurred across the range of values. The women had performed the same measurements 7 years earlier using the same devices and protocol. The sample means and SD observed across 7 years differed little. Hemoglobin concentration increased substantially after menopause. ConclusionsAnalyzing repeatability features of traits may improve our interpretation of statistical analyses and detection of variation from measurement or biology. The high levels of measurement repeatability and biological stability support the continued use of these robust traits for investigating human adaptation in this altitude range. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1831530
- PAR ID:
- 10364690
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- American Journal of Human Biology
- Volume:
- 34
- Issue:
- 4
- ISSN:
- 1042-0533
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract BackgroundComplex organismal traits are often the result of multiple interacting genes and sub-organismal phenotypes, but how these interactions shape the evolutionary trajectories of adaptive traits is poorly understood. We examined how functional interactions between cardiorespiratory traits contribute to adaptive increases in the capacity for aerobic thermogenesis (maximal O2consumption,V̇O2max, during acute cold exposure) in high-altitude deer mice (Peromyscus maniculatus). We crossed highland and lowland deer mice to produce F2inter-population hybrids, which expressed genetically based variation in hemoglobin (Hb) O2affinity on a mixed genetic background. We then combined physiological experiments and mathematical modeling of the O2transport pathway to examine the links between cardiorespiratory traits andV̇O2max. ResultsPhysiological experiments revealed that increases in Hb-O2affinity of red blood cells improved blood oxygenation in hypoxia but were not associated with an enhancement inV̇O2max. Sensitivity analyses performed using mathematical modeling showed that the influence of Hb-O2affinity onV̇O2max in hypoxia was contingent on the capacity for O2diffusion in active tissues. ConclusionsThese results suggest that increases in Hb-O2affinity would only have adaptive value in hypoxic conditions if concurrent with or preceded by increases in tissue O2diffusing capacity. In high-altitude deer mice, the adaptive benefit of increasing Hb-O2affinity is contingent on the capacity to extract O2from the blood, which helps resolve controversies about the general role of hemoglobin function in hypoxia tolerance.more » « less
- 
            Abstract During the summer of 2018, the upward-pointing Wyoming Cloud Lidar (WCL) was deployed on board the University of Wyoming King Air (UWKA) research aircraft for the Biomass Burning Flux Measurements of Trace Gases and Aerosols (BB-FLUX) field campaign. This paper describes the generation of calibrated attenuated backscatter coefficients and aerosol extinction coefficients from the WCL measurements. The retrieved aerosol extinction coefficients at the flight level strongly correlate (correlation coefficient, rr > 0.8) with in situ aerosol concentration and carbon monoxide (CO) concentration, providing a first-order estimate for converting WCL extinction coefficients into vertically resolved CO and aerosol concentration within wildfire smoke plumes. The integrated CO column concentrations from the WCL data in nonextinguished profiles also correlate (rr = 0.7) with column measurements by the University of Colorado Airborne Solar Occultation Flux instrument, indicating the validity of WCL-derived extinction coefficients. During BB-FLUX, the UWKA sampled smoke plumes from more than 20 wildfires during 35 flights over the western United States. Seventy percent of flight time was spent below 3 km above ground level (AGL) altitude, although the UWKA ascended up to 6 km AGL to sample the top of some deep smoke plumes. The upward-pointing WCL observed a nearly equal amount of thin and dense smoke below 2 km and above 5 km due to the flight purpose of targeted fresh fire smoke. Between 2 and 5 km, where most of the wildfire smoke resided, the WCL observed slightly more thin smoke than dense smoke due to smoke spreading. Extinction coefficients in dense smoke were 2–10 times stronger, and dense smoke tended to have larger depolarization ratio, associated with irregular aerosol particles.more » « less
- 
            PurposeEstimating microstructural parameters of skeletal muscle from diffusion MRI (dMRI) signal requires understanding the relative importance of both microstructural and dMRI sequence parameters on the signal. This study seeks to determine the sensitivity of dMRI signal to variations in microstructural and dMRI sequence parameters, as well as assess the effect of noise on sensitivity. MethodsUsing a cylindrical myocyte model of skeletal muscle, numerical solutions of the Bloch‐Torrey equation were used to calculate global sensitivity indices of dMRI metrics (FA, RD, MD,,,) for wide ranges of microstructural and dMRI sequence parameters. The microstructural parameters were: myocyte diameter, volume fraction, membrane permeability, intra‐ and extracellular diffusion coefficients, and intra‐ and extracellulartimes. Two separate pulse sequences were examined, a PGSE and a generalized diffusion‐weighted sequence that accommodates a larger range of diffusion times. The effect of noise and signal averaging on the sensitivity of the dMRI metrics was examined by adding synthetic noise to the simulated signal. ResultsAmong the examined parameters, the intracellular diffusion coefficient has the strongest effect, and myocyte diameter is more influential than permeability for FA and RD. The sensitivity indices do not vary significantly between the two pulse sequences. Also, noise strongly affects the sensitivity of the dMRI signal to microstructural variations. ConclusionsWith the identification of key microstructural features that affect dMRI measurements, the reported sensitivity results can help interpret dMRI measurements of skeletal muscle in terms of the underlying microstructure and further develop parsimonious dMRI models of skeletal muscle.more » « less
- 
            Abstract ObjectivesThe Sherpa ethnic group living at altitude in Nepal may have experienced natural selection in response to chronic hypoxia. We have previously shown that Sherpa in Kathmandu (1400 m) possess larger spleens and a greater apnea‐induced splenic contraction compared to lowland Nepalis. This may be significant for exercise capacity at altitude as the human spleen responds to stress‐induced catecholamine secretion by an immediate contraction, which results in transiently elevated hemoglobin concentration ([Hb]). MethodsTo investigate splenic contraction in response to exercise at high‐altitude (4300 m; Pb = ~450 Torr), we recruited 63 acclimatized Sherpa (29F) and 14 Nepali non‐Sherpa (7F). Spleen volume was measured before and after maximal exercise on a cycle ergometer by ultrasonography, along with [Hb] and oxygen saturation (SpO2). ResultsResting spleen volume was larger in the Sherpa compared with Nepali non‐Sherpa (237 ± 62 vs. 165 ± 34 mL,p < .001), as was the exercise‐induced splenic contraction (Δspleen volume, 91 ± 40 vs. 38 ± 32 mL,p < .001). From rest to exercise, [Hb] increased (1.2 to 1.4 g.dl−1), SpO2decreased (~9%) and calculated arterial oxygen content (CaO2) remained stable, but there were no significant differences between groups. In Sherpa, both resting spleen volume and the Δspleen volume were modest positive predictors of the change (Δ) in [Hb] and CaO2with exercise (p‐values from .026 to .037 and R2values from 0.059 to 0.067 for the predictor variable). ConclusionsLarger spleens and greater splenic contraction may be an adaptive characteristic of Nepali Sherpa to increase CaO2during exercise at altitude, but the direct link between spleen size/function and hypoxia tolerance remains unclear.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
