Wide-field near-infrared (NIR) polarimetry was used to examine disk systems around two brown dwarfs (BDs) and two young stellar objects (YSOs) embedded in the Heiles Cloud 2 (HCl2) dark molecular cloud in Taurus as well as numerous stars located behind HCl2. Inclined disks exhibit intrinsic NIR polarization due to scattering of photospheric light, which is detectable even for unresolved systems. After removing polarization contributions from magnetically aligned dust in HCl2 determined from the background star information, significant intrinsic polarization was detected from the disk systems of one BD (ITG 17) and both YSOs (ITG 15, ITG 25), but not from the other BD (2M0444). The ITG 17 BD shows good agreement of the disk orientation inferred from the NIR and from published Atacama Large Millimeter/submillieter Array dust continuum imaging. ITG 17 was also found to reside in a 5200 au wide binary (or hierarchical quad star system) with the ITG 15 YSO disk system. The inferred disk orientations from the NIR for ITG 15 and ITG 17 are parallel to each other and perpendicular to the local magnetic field direction. The multiplicity of the system and the large BD disk nature could have resulted from formation in an environmentmore »
Accretion is one of the defining characteristics of classical T Tauri stars, fueled by the presence of a circumstellar disk comprised of dust and gas. Accretion produces a UV and optical excess, while re-radiated emission at the inner edge of the dust component of the disk produces a near-infrared (NIR) excess. The interplay between stars and their disks helps regulate protoplanetary disk evolution and dispersal, which is key to a full understanding of planet formation. To investigate the relations between NIR excess and optical excess in both single and binary stars, we used an archival sample of spectroscopically characterized members of the Taurus star-forming region (
- Publication Date:
- NSF-PAR ID:
- 10364731
- Journal Name:
- The Astrophysical Journal
- Volume:
- 928
- Issue:
- 2
- Page Range or eLocation-ID:
- Article No. 134
- ISSN:
- 0004-637X
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Despite recent progress, the astrophysical channels responsible for rapid neutron capture (
r -process) nucleosynthesis remain an unsettled question. Observations of the kilonova following the gravitational-wave-detected neutron star merger GW170817 established mergers as one site of ther -process, but additional sources may be needed to fully explainr -process enrichment in the universe. One intriguing possibility is that rapidly rotating massive stars undergoing core collapse launchr -process-rich outflows off the accretion disks formed from their infalling matter. In this scenario,r -process winds are one component of the supernova (SN) ejecta produced by “collapsar” explosions. We present the first systematic study of the effects ofr -process enrichment on the emission from collapsar-generated SNe. We semianalytically modelr -process SN emission from explosion out to late times and determine its distinguishing features. The ease with whichr -process SNe can be identified depends on how effectively wind material mixes into the initiallyr -process-free outer layers of the ejecta. In many cases, enrichment produces a near-infrared (NIR) excess that can be detected within ∼75 days of explosion. We also discuss optimal targets and observing strategies for testing ther -process collapsar theory, and find that frequent monitoring of optical and NIR emission from high-velocity SNe in the first few months after explosion offers a reasonable chance ofmore » -
We present new 890 μ m continuum ALMA observations of five brown dwarfs (BDs) with infrared excess in Lupus I and III, which in combination with four previously observed BDs allowed us to study the millimeter properties of the full known BD disk population of one star-forming region. Emission is detected in five out of the nine BD disks. Dust disk mass, brightness profiles, and characteristic sizes of the BD population are inferred from continuum flux and modeling of the observations. Only one source is marginally resolved, allowing for the determination of its disk characteristic size. We conduct a demographic comparison between the properties of disks around BDs and stars in Lupus. Due to the small sample size, we cannot confirm or disprove a drop in the disk mass over stellar mass ratio for BDs, as suggested for Ophiuchus. Nevertheless, we find that all detected BD disks have an estimated dust mass between 0.2 and 3.2 M ⊙ ; these results suggest that the measured solid masses in BD disks cannot explain the observed exoplanet population, analogous to earlier findings on disks around more massive stars. Combined with the low estimated accretion rates, and assuming that the mm-continuum emission ismore »
-
Abstract We analyze a sample of 25 [Ne
v ] (λ 3426) emission-line galaxies at 1.4 <z < 2.3 using Hubble Space Telescope/Wide Field Camera 3 G102 and G141 grism observations from the CANDELS Lyα Emission at Reionization (CLEAR) survey. [Nev ] emission probes extremely energetic photoionization (creation potential of 97.11 eV) and is often attributed to energetic radiation from active galactic nuclei (AGNs), shocks from supernovae, or an otherwise very hard ionizing spectrum from the stellar continuum. In this work, we use [Nev ] in conjunction with other rest-frame UV/optical emission lines ([Oii ]λ λ 3726, 3729, [Neiii ]λ 3869, Hβ , [Oiii ]λ λ 4959, 5007, Hα +[Nii ]λ λ 6548, 6583, [Sii ]λ λ 6716, 6731), deep (2–7 Ms) X-ray observations (from Chandra), and mid-infrared imaging (from Spitzer) to study the origin of this emission and to place constraints on the nature of the ionizing engine. The majority of the [Nev ]-detected galaxies have properties consistent with ionization from AGNs. However, for our [Nev ]-selected sample, the X-ray luminosities are consistent with local (z ≲ 0.1) X-ray-selected Seyferts, but the [Nev ] luminosities are more consistent with those fromz ∼ 1 X-ray-selected QSOs. The excess [Nev ] emission requires either reduced hard X-rays or a ∼0.1 keV excess. We discuss possible origins of the apparent [Nev ] excess, which could be related to the “soft (X-ray) excess”more » -
Abstract We present the characterization of the low-gravity M6 dwarf 2MASS J06195260-2903592, previously identified as an unusual field object based on its strong IR excess and variable near-IR spectrum. Multiple epochs of low-resolution (
R ≈ 150) near-IR spectra show large-amplitude (≈0.1–0.5 mag) continuum variations on timescales of days to 12 yr, unlike the small-amplitude variability typical for field ultracool dwarfs. The variations between epochs are well-modeled as changes in the relative extinction (ΔA V ≈ 2 mag). Similarly, Panoramic Survey Telescope and Rapid Response System 1 optical photometry varies on timescales as long as 11 yr (and possibly as short as an hour) and implies comparableA V changes. Near Earth Object Wide-field Infrared Survey Explorer mid-IR light curves also suggest changes on 6 month timescales, with amplitudes consistent with the optical/near-IR extinction variations. However, near-IR spectra, near-IR photometry, and optical photometry obtained in the past year indicate that the source can also be stable on hourly and monthly timescales. From comparison to objects of similar spectral type, the total extinction of 2MASS J0619-2903 seems to beA V ≈ 4–6 mag, with perhaps epochs of lower extinction. Gaia Early Data Release 3 (EDR3) finds that 2MASS J0619-2903 has a wide-separation (1.′2 = 10,450 au) stellar companion, with anmore »