skip to main content

Title: Optical and Near-infrared Excesses are Correlated in T Tauri Stars
Abstract

Accretion is one of the defining characteristics of classical T Tauri stars, fueled by the presence of a circumstellar disk comprised of dust and gas. Accretion produces a UV and optical excess, while re-radiated emission at the inner edge of the dust component of the disk produces a near-infrared (NIR) excess. The interplay between stars and their disks helps regulate protoplanetary disk evolution and dispersal, which is key to a full understanding of planet formation. To investigate the relations between NIR excess and optical excess in both single and binary stars, we used an archival sample of spectroscopically characterized members of the Taurus star-forming region (τ∼ 1–2 Myr) with measured luminosities, spectral types, and optical veiling. We combined the archival sample with the Two Micron All Sky Survey and Wide-field Infrared Survey Explorer NIR photometry and high-resolution imaging surveys. We found that NIR and optical excesses are correlated in multiple NIR photometric bands, suggesting that they are closely related, likely because more massive disks have higher inner dust disk walls and are also associated with higher accretion rates. We also found that multiplicity has no impact on accretion or inner disk properties in a sample with a wide range more » of separations, but the sample was too small to specifically investigate close binaries, where the effects of multiplicity on disk properties should be most significant.

« less
Authors:
;
Publication Date:
NSF-PAR ID:
10364731
Journal Name:
The Astrophysical Journal
Volume:
928
Issue:
2
Page Range or eLocation-ID:
Article No. 134
ISSN:
0004-637X
Publisher:
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Wide-field near-infrared (NIR) polarimetry was used to examine disk systems around two brown dwarfs (BDs) and two young stellar objects (YSOs) embedded in the Heiles Cloud 2 (HCl2) dark molecular cloud in Taurus as well as numerous stars located behind HCl2. Inclined disks exhibit intrinsic NIR polarization due to scattering of photospheric light, which is detectable even for unresolved systems. After removing polarization contributions from magnetically aligned dust in HCl2 determined from the background star information, significant intrinsic polarization was detected from the disk systems of one BD (ITG 17) and both YSOs (ITG 15, ITG 25), but not from the other BD (2M0444). The ITG 17 BD shows good agreement of the disk orientation inferred from the NIR and from published Atacama Large Millimeter/submillieter Array dust continuum imaging. ITG 17 was also found to reside in a 5200 au wide binary (or hierarchical quad star system) with the ITG 15 YSO disk system. The inferred disk orientations from the NIR for ITG 15 and ITG 17 are parallel to each other and perpendicular to the local magnetic field direction. The multiplicity of the system and the large BD disk nature could have resulted from formation in an environmentmore »characterized by misalignment of the magnetic field and the protostellar disks.

    « less
  2. Abstract

    Despite recent progress, the astrophysical channels responsible for rapid neutron capture (r-process) nucleosynthesis remain an unsettled question. Observations of the kilonova following the gravitational-wave-detected neutron star merger GW170817 established mergers as one site of ther-process, but additional sources may be needed to fully explainr-process enrichment in the universe. One intriguing possibility is that rapidly rotating massive stars undergoing core collapse launchr-process-rich outflows off the accretion disks formed from their infalling matter. In this scenario,r-process winds are one component of the supernova (SN) ejecta produced by “collapsar” explosions. We present the first systematic study of the effects ofr-process enrichment on the emission from collapsar-generated SNe. We semianalytically modelr-process SN emission from explosion out to late times and determine its distinguishing features. The ease with whichr-process SNe can be identified depends on how effectively wind material mixes into the initiallyr-process-free outer layers of the ejecta. In many cases, enrichment produces a near-infrared (NIR) excess that can be detected within ∼75 days of explosion. We also discuss optimal targets and observing strategies for testing ther-process collapsar theory, and find that frequent monitoring of optical and NIR emission from high-velocity SNe in the first few months after explosion offers a reasonable chance ofmore »success while respecting finite observing resources. Such early identification ofr-process collapsar candidates also lays the foundation for nebular-phase spectroscopic follow-up in the NIR and mid-infrared, for example, with the James Webb Space Telescope.

    « less
  3. We present new 890 μ m continuum ALMA observations of five brown dwarfs (BDs) with infrared excess in Lupus I and III, which in combination with four previously observed BDs allowed us to study the millimeter properties of the full known BD disk population of one star-forming region. Emission is detected in five out of the nine BD disks. Dust disk mass, brightness profiles, and characteristic sizes of the BD population are inferred from continuum flux and modeling of the observations. Only one source is marginally resolved, allowing for the determination of its disk characteristic size. We conduct a demographic comparison between the properties of disks around BDs and stars in Lupus. Due to the small sample size, we cannot confirm or disprove a drop in the disk mass over stellar mass ratio for BDs, as suggested for Ophiuchus. Nevertheless, we find that all detected BD disks have an estimated dust mass between 0.2 and 3.2 M ⊙ ; these results suggest that the measured solid masses in BD disks cannot explain the observed exoplanet population, analogous to earlier findings on disks around more massive stars. Combined with the low estimated accretion rates, and assuming that the mm-continuum emission ismore »a reliable proxy for the total disk mass, we derive ratios of Ṁ acc ∕ M disk that are significantly lower than in disks around more massive stars. If confirmed with more accurate measurements of disk gas masses, this result could imply a qualitatively different relationship between disk masses and inward gas transport in BD disks.« less
  4. Abstract

    We analyze a sample of 25 [Nev] (λ3426) emission-line galaxies at 1.4 <z< 2.3 using Hubble Space Telescope/Wide Field Camera 3 G102 and G141 grism observations from the CANDELS LyαEmission at Reionization (CLEAR) survey. [Nev] emission probes extremely energetic photoionization (creation potential of 97.11 eV) and is often attributed to energetic radiation from active galactic nuclei (AGNs), shocks from supernovae, or an otherwise very hard ionizing spectrum from the stellar continuum. In this work, we use [Nev] in conjunction with other rest-frame UV/optical emission lines ([Oii]λλ3726, 3729, [Neiii]λ3869, Hβ, [Oiii]λλ4959, 5007, Hα+[Nii]λλ6548, 6583, [Sii]λλ6716, 6731), deep (2–7 Ms) X-ray observations (from Chandra), and mid-infrared imaging (from Spitzer) to study the origin of this emission and to place constraints on the nature of the ionizing engine. The majority of the [Nev]-detected galaxies have properties consistent with ionization from AGNs. However, for our [Nev]-selected sample, the X-ray luminosities are consistent with local (z≲ 0.1) X-ray-selected Seyferts, but the [Nev] luminosities are more consistent with those fromz∼ 1 X-ray-selected QSOs. The excess [Nev] emission requires either reduced hard X-rays or a ∼0.1 keV excess. We discuss possible origins of the apparent [Nev] excess, which could be related to the “soft (X-ray) excess”more »observed in some QSOs and Seyferts and/or be a consequence of a complex/anisotropic geometry for the narrow-line region, combined with absorption from a warm, relativistic wind ejected from the accretion disk. We also consider implications for future studies of extreme high-ionization systems in the epoch of reionization (z≳ 6) with the James Webb Space Telescope.

    « less
  5. Abstract

    We present the characterization of the low-gravity M6 dwarf 2MASS J06195260-2903592, previously identified as an unusual field object based on its strong IR excess and variable near-IR spectrum. Multiple epochs of low-resolution (R≈ 150) near-IR spectra show large-amplitude (≈0.1–0.5 mag) continuum variations on timescales of days to 12 yr, unlike the small-amplitude variability typical for field ultracool dwarfs. The variations between epochs are well-modeled as changes in the relative extinction (ΔAV≈ 2 mag). Similarly, Panoramic Survey Telescope and Rapid Response System 1 optical photometry varies on timescales as long as 11 yr (and possibly as short as an hour) and implies comparableAVchanges. Near Earth Object Wide-field Infrared Survey Explorer mid-IR light curves also suggest changes on 6 month timescales, with amplitudes consistent with the optical/near-IR extinction variations. However, near-IR spectra, near-IR photometry, and optical photometry obtained in the past year indicate that the source can also be stable on hourly and monthly timescales. From comparison to objects of similar spectral type, the total extinction of 2MASS J0619-2903 seems to beAV≈ 4–6 mag, with perhaps epochs of lower extinction. Gaia Early Data Release 3 (EDR3) finds that 2MASS J0619-2903 has a wide-separation (1.′2 = 10,450 au) stellar companion, with anmore »isochronal age of3110+22Myr and a mass of0.300.03+0.04M. Adopting this companion’s age and EDR3 distance (145.2 ± 0.6 pc), we estimate a mass of 0.11–0.17Mfor 2MASS J0619-2903. Altogether, 2MASS J0619-2903 appears to possess an unusually long-lived primordial circumstellar disk, perhaps making it a more obscured analog to the “Peter Pan” disks found around a few M dwarfs in nearby young moving groups.

    « less