skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CRISPR-mediated multiplexed live cell imaging of nonrepetitive genomic loci with one guide RNA per locus
Abstract Three-dimensional (3D) structures of the genome are dynamic, heterogeneous and functionally important. Live cell imaging has become the leading method for chromatin dynamics tracking. However, existing CRISPR- and TALE-based genomic labeling techniques have been hampered by laborious protocols and are ineffective in labeling non-repetitive sequences. Here, we report a versatile CRISPR/Casilio-based imaging method that allows for a nonrepetitive genomic locus to be labeled using one guide RNA. We construct Casilio dual-color probes to visualize the dynamic interactions of DNA elements in single live cells in the presence or absence of the cohesin subunit RAD21. Using a three-color palette, we track the dynamic 3D locations of multiple reference points along a chromatin loop. Casilio imaging reveals intercellular heterogeneity and interallelic asynchrony in chromatin interaction dynamics, underscoring the importance of studying genome structures in 4D.  more » « less
Award ID(s):
2229306 1955712
PAR ID:
10364849
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The spatial organization and dynamics of a genome are central to gene regulation. While a comprehensive understanding of chromatin organization in the human nucleus has been achieved using fixed-cell methods, measuring the dynamics of specific genomic regions over extended periods in individual living cells remains challenging. Here, we present a robust and fully genetically encoded system for fluorescent labeling and long-term tracking of any accessible non-repetitive genomic locus in live human cells using fluorogenic and replenishable nanobody array fusions of theStaphylococcus aureusdCas9, and compact polycistronic single guide (sg)RNAs. First, we characterize the selectivity and photostability of our probes, enabling genome-wide visualization of chromatin dynamics at locally repetitive elements. Next, through multiplexed expression of 8–10 sgRNAs from polycistronic cassettes, we demonstrate efficient and sustained labeling of non-repetitive loci, enabling high-fidelity tracking of gene-proximal regions at exceptional spatial and temporal resolution. Finally, by correlating chromatin mobility with transcriptional activity at multiple genes, we find that local chromatin dynamics at 20 Hz are gene-specific and not necessarily dependent on transcription. Our approach is versatile, minimally invasive, and scalable, enabling multiplexed imaging of regulatory element dynamics involved in gene control, with broad applicability across diverse biological systems and disease contexts. 
    more » « less
  2. Ren, Xiaojun (Ed.)
    As imaging techniques rapidly evolve to probe nanoscale genome organization at higher resolution, it is critical to consider how the reagents and procedures involved in sample preparation affect chromatin at the relevant length scales. Here, we investigate the effects of fluorescent labeling of DNA sequences within chromatin using the gold standard technique of three-dimensional fluorescencein situhybridization (3D FISH). The chemical reagents involved in the 3D FISH protocol, specifically formamide, cause significant alterations to the sub-200 nm (sub-Mbp) chromatin structure. Alternatively, two labeling methods that do not rely on formamide denaturation, resolution after single-strand exonuclease resection (RASER)-FISH and clustered regularly interspaced short palindromic repeats (CRISPR)-Sirius, had minimal impact on the three-dimensional organization of chromatin. We present a polymer physics-based analysis of these protocols with guidelines for their interpretation when assessing chromatin structure using currently available techniques. 
    more » « less
  3. Abstract BackgroundB-type lamins are critical nuclear envelope proteins that interact with the three-dimensional genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron technology. ResultsUsing live-cell Dual Partial Wave Spectroscopic (Dual-PWS) microscopy, Stochastic Optical Reconstruction Microscopy (STORM), in situ Hi-C, CRISPR-Sirius, and fluorescence in situ hybridization (FISH), we demonstrate that lamin B1 and lamin B2 are critical structural components of the nuclear periphery that create a repressive compartment for peripheral-associated genes. Lamin B1 and lamin B2 depletion minimally alters higher-order chromatin folding but disrupts cell morphology, significantly increases chromatin mobility, redistributes both constitutive and facultative heterochromatin, and induces differential gene expression both within and near lamin-associated domain (LAD) boundaries. Critically, we demonstrate that chromatin territories expand as upregulated genes within LADs radially shift inwards. Our results indicate that the mechanism of action of B-type lamins comes from their role in constraining chromatin motion and spatial positioning of gene-specific loci, heterochromatin, and chromatin domains. ConclusionsOur findings suggest that, while B-type lamin degradation does not significantly change genome topology, it has major implications for three-dimensional chromatin conformation at the single-cell level both at the lamina-associated periphery and the non-LAD-associated nuclear interior with concomitant genome-wide transcriptional changes. This raises intriguing questions about the individual and overlapping roles of lamin B1 and lamin B2 in cellular function and disease. 
    more » « less
  4. null (Ed.)
    Extending across multiple length scales, dynamic chromatin structure is linked to transcription through the regulation of genome organization. However, no individual technique can fully elucidate this structure and its relation to molecular function at all length and time scales at both a single-cell level and a population level. Here, we present a multitechnique nanoscale chromatin imaging and analysis (nano-ChIA) platform that consolidates electron tomography of the primary chromatin fiber, optical super-resolution imaging of transcription processes, and label-free nano-sensing of chromatin packing and its dynamics in live cells. Using nano-ChIA, we observed that chromatin is localized into spatially separable packing domains, with an average diameter of around 200 nanometers, sub-megabase genomic size, and an internal fractal structure. The chromatin packing behavior of these domains exhibits a complex bidirectional relationship with active gene transcription. Furthermore, we found that properties of PDs are correlated among progenitor and progeny cells across cell division. 
    more » « less
  5. 3D genomics methods such as Hi-C and Micro-C have uncovered chromatin loops across the genome and linked these loops to gene regulation. However, these methods only measure 3D interaction probabilities on a relative scale. Here, we overcome this limitation by using live imaging data to calibrate Micro-C in mouse embryonic stem cells, thus obtaining absolute looping probabilities for 36,804 chromatin loops across the genome. We find that the looped state is generally rare, with a mean probability of 2.3% and a maximum of 26% across the quantified loops. On average, CTCF-CTCF loops are stronger than loops between cis-regulatory elements (3.2% vs. 1.1%). Our findings can be extended to human stem cells and differentiated cells under certain assumptions. Overall, we establish an approach for genome-wide absolute loop quantification and report that loops generally occur with low probabilities, generalizing recent live imaging results to the whole genome. 
    more » « less