skip to main content


Title: Chemistry and physical properties of the born-again planetary nebula HuBi 1
ABSTRACT

The central star of the planetary nebula (PN) HuBi 1 has been recently proposed to have experienced a very late thermal pulse (VLTP), but the dilution of the emission of the recent ejecta by that of the surrounding H-rich old outer shell has so far hindered confirming its suspected H-poor nature. We present here an analysis of the optical properties of the ejecta in the innermost regions of HuBi 1 using MEGARA high-dispersion integral field and OSIRIS intermediate-dispersion long-slit spectroscopic observations obtained with the 10.4-m Gran Telescopio de Canarias. The unprecedented tomographic capability of MEGARA to resolve structures in velocity space allowed us to disentangle for the first time the Hα and Hβ emission of the recent ejecta from that of the outer shell. The recent ejecta is found to have much higher extinction than the outer shell, implying the presence of large amounts of dust. The spatial distribution of the emission from the ejecta and the locus of key line ratios in diagnostic diagrams probe the shock excitation of the inner ejecta in HuBi 1, in stark contrast with the photoionization nature of the H-rich outer shell. The abundances of the recent ejecta have been computed using the mappings v code under a shock scenario. They are found to be consistent with a born-again ejection scenario experienced by the progenitor star, which is thus firmly confirmed as a new ‘born-again’ star.

 
more » « less
NSF-PAR ID:
10364875
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
512
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4003-4020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Initially classified as a Type Ib supernova (SN), ∼100 days after the explosion SN 2014C made a transition to a Type II SN, presenting a gradual increase in the H α emission. This has been interpreted as evidence of interaction between the SN shock wave and a massive shell previously ejected from the progenitor star. In this paper we present numerical simulations of the propagation of the SN shock through the progenitor star and its wind, as well as the interaction of the SN ejecta with the massive shell. To determine with high precision the structure and location of the shell, we couple a genetic algorithm to a hydrodynamic and a bremsstrahlung radiation transfer code. We iteratively modify the density stratification and location of the shell by minimizing the variance between X-ray observations and synthetic predictions computed from the numerical model, allowing the shell structure to be completely arbitrary. By assuming spherical symmetry, we found that our best-fit model has a shell mass of 2.6 M ⊙ ; extends from 1.6 × 10 16 cm to 1.87 × 10 17 cm, implying that it was ejected ∼ 60/( v w /100 km s −1 ) yr before the SN explosion; and has a density stratification with an average behavior ∼ r −3 but presenting density fluctuations larger than one order of magnitude. Finally, we predict that if the density stratification follows the same power-law behavior, the SN will break out from the shell by mid-2022, i.e., 8.5 yr after explosion. 
    more » « less
  2. Abstract

    Supernova (SN) 1987A is the nearest supernova in ∼400 yr. Using the JWST MIRI Medium Resolution Spectrograph, we spatially resolved the ejecta, equatorial ring (ER), and outer rings in the mid-infrared 12,927 days (35.4 yr) after the explosion. The spectra are rich in line and dust continuum emission, both in the ejecta and the ring. The broad emission lines (280–380 km s−1FWHM) that are seen from all singly-ionized species originate from the expanding ER, with properties consistent with dense post-shock cooling gas. Narrower emission lines (100–170 km s−1FWHM) are seen from species originating from a more extended lower-density component whose high ionization may have been produced by shocks progressing through the ER or by the UV radiation pulse associated with the original supernova event. The asymmetric east–west dust emission in the ER has continued to fade, with constant temperature, signifying a reduction in dust mass. Small grains in the ER are preferentially destroyed, with larger grains from the progenitor surviving the transition from SN into SNR. The ER dust is fit with a single set of optical constants, eliminating the need for a secondary featureless hot dust component. We find several broad ejecta emission lines from [Neii], [Arii], [Feii], and [Niii]. With the exception of [Feii] 25.99μm, these all originate from the ejecta close to the ring and are likely to be excited by X-rays from the interaction. The [Feii] 5.34 to 25.99μm line ratio indicates a temperature of only a few hundred K in the inner core, which is consistent with being powered by44Ti decay.

     
    more » « less
  3. ABSTRACT

    We present photometry and spectroscopy of the slowly evolving superluminous Type IIn supernova (SN) 2015da. SN 2015da is extraordinary for its very high peak luminosity, and also for sustaining a high luminosity for several years. Even at 8 yr after explosion, SN 2015da remains as luminous as the peak of a normal SN II-P. The total radiated energy integrated over this time period (with no bolometric correction) is at least $1.6 \times 10^{51}$ erg (or 1.6 FOE). Including a mild bolometric correction, adding kinetic energy of the expanding cold dense shell of swept-up circumstellar material (CSM), and accounting for asymmetry, the total explosion kinetic energy was likely 5–10 FOE. Powering the light curve with CSM interaction requires an energetic explosion and 20 M$_{\odot }$ of H-rich CSM, which in turn implies a massive progenitor system $\gt $30 M$_{\odot }$. Narrow P Cyg features show steady CSM expansion at 90 km s$^{-1}$, requiring a high average mass-loss rate of $\sim$0.1 M$_{\odot }$ yr$^{-1}$ sustained for two centuries before explosion (although ramping up toward explosion time). No current theoretical model for single-star pre-SN mass-loss can account for this. The slow CSM, combined with broad wings of H $\alpha$ indicating H-rich material in the unshocked ejecta, disfavours a pulsational pair instability model for the pre-SN mass-loss. Instead, violent pre-SN binary interaction is a likely culprit. Finally, SN 2015da exhibits the characteristic asymmetric blueshift in its emission lines from shortly after peak until the present epoch, adding another well-studied superluminous SNe IIn with unambiguous evidence of post-shock dust formation.

     
    more » « less
  4. ABSTRACT

    Classical novae are shock-powered multiwavelength transients triggered by a thermonuclear runaway on an accreting white dwarf. V1674 Her is the fastest nova ever recorded (time to declined by two magnitudes is t2 = 1.1 d) that challenges our understanding of shock formation in novae. We investigate the physical mechanisms behind nova emission from GeV γ-rays to cm-band radio using coordinated Fermi-LAT, NuSTAR, Swift, and VLA observations supported by optical photometry. Fermi-LAT detected short-lived (18 h) 0.1–100 GeV emission from V1674 Her that appeared 6 h after the eruption began; this was at a level of (1.6 ± 0.4) × 10−6 photons cm−2 s−1. Eleven days later, simultaneous NuSTAR and Swift X-ray observations revealed optically thin thermal plasma shock-heated to kTshock = 4 keV. The lack of a detectable 6.7 keV Fe Kα emission suggests super-solar CNO abundances. The radio emission from V1674 Her was consistent with thermal emission at early times and synchrotron at late times. The radio spectrum steeply rising with frequency may be a result of either free-free absorption of synchrotron and thermal emission by unshocked outer regions of the nova shell or the Razin–Tsytovich effect attenuating synchrotron emission in dense plasma. The development of the shock inside the ejecta is unaffected by the extraordinarily rapid evolution and the intermediate polar host of this nova.

     
    more » « less
  5. Abstract

    Tight binary or multiple-star systems can interact through mass transfer and follow vastly different evolutionary pathways than single stars. The star TYC 2597-735-1 is a candidate for a recent stellar merger remnant resulting from a coalescence of a low-mass companion with a primary star a few thousand years ago. This violent event is evident in a conical outflow (“Blue Ring Nebula”) emitting in UV light and surrounded by leading shock filaments observed in Hαand UV emission. From Chandra data, we report the detection of X-ray emission from the location of TYC 2597-735-1 with a luminositylog(LX/Lbol)=5.5. Together with a previously reported period of ~14 days, this indicates ongoing stellar activity and the presence of strong magnetic fields on TYC 2597-735-1. Supported by stellar evolution models of merger remnants, we interpret the inferred stellar magnetic field as dynamo action associated with a newly formed convection zone in the atmosphere of TYC 2597-735-1, though internal shocks at the base of an accretion-powered jet cannot be ruled out. We speculate that this object will evolve into an FK Com–type source, i.e., a class of rapidly spinning magnetically active stars for which a merger origin has been proposed but for which no relic accretion or large-scale nebula remains visible. We also detect likely X-ray emission from two small regions close to the outer shock fronts in the Blue Ring Nebula, which may arise from inhomogeneities either in the circumstellar medium or in the mass and velocity distribution in the merger-driven outflow.

     
    more » « less