Abstract Artificial superlattices composed of perovskite oxides serves as an essential platform for engineering coherent phonon transport by redefining the lattice periodicity, which strongly influences the lattice‐coupled phase transitions in charge and spin degrees of freedom. However, previous methods of manipulating phonons have been limited to controlling the periodicity of superlattice, rather than utilizing complex mutual interactions that are prominent in transition metal oxides. In this study on oxide superlattices composed of ferromagnetic metallic SrRuO3and quantum paraelectric SrTiO3, phonon modulation by controlling the geometry of superlattice in atomic‐scale precision is realized, demonstrating the coherent phonon engineering using structural and magnetic phase transitions. By modulating the interface density, coherent‐incoherent crossover of the phonon transport at room temperature is observed, which is coupled with a change in interfacial structural continuity. Upon cooling, the close relation between phonon transport and multiple phase transitions is identified. In particular, the enhancement of the polar state in SrTiO3layer at ≈200 K leads to the weakening of phonon coherence and a further reduction of thermal conductivity in superlattices compared to the bulk limit. These findings provide a guide to developing future thermoelectric nanodevices by engineering the coherence of phonons via the design of complex oxide heterostructures.
more »
« less
Atomistic Engineering of Phonons in Functional Oxide Heterostructures
Abstract Engineering of phonons, that is, collective lattice vibrations in crystals, is essential for manipulating physical properties of materials such as thermal transport, electron‐phonon interaction, confinement of lattice vibration, and optical polarization. Most approaches to phonon‐engineering have been largely limited to the high‐quality heterostructures of III–V compound semiconductors. Yet, artificial engineering of phonons in a variety of materials with functional properties, such as complex oxides, will yield unprecedented applications of coherent tunable phonons in future quantum acoustic devices. In this study, artificial engineering of phonons in the atomic‐scale SrRuO3/SrTiO3superlattices is demonstrated, wherein tunable phonon modes are observed via confocal Raman spectroscopy. In particular, the coherent superlattices led to the backfolding of acoustic phonon dispersion, resulting in zone‐folded acoustic phonons in the THz frequency domain. The frequencies can be largely tuned from 1 to 2 THz via atomic‐scale precision thickness control. In addition, a polar optical phonon originating from the local inversion symmetry breaking in the artificial oxide superlattices is observed, exhibiting emergent functionality. The approach of atomic‐scale heterostructuring of complex oxides will vastly expand material systems for quantum acoustic devices, especially with the viability of functionality integration.
more »
« less
- Award ID(s):
- 2104296
- PAR ID:
- 10364942
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Science
- Volume:
- 9
- Issue:
- 7
- ISSN:
- 2198-3844
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Twisted bilayer graphene (TBG) exhibits extremely low Fermi velocities for electrons, with the speed of sound surpassing the Fermi velocity. This regime enables the use of TBG for amplifying vibrational waves of the lattice through stimulated emission, following the same principles of operation of free-electron lasers. Our work proposes a lasing mechanism relying on the slow-electron bands to produce a coherent beam of acoustic phonons. We propose a device based on undulated electrons in TBG, which we dub the phaser. The device generates phonon beams in a terahertz (THz) frequency range, which can then be used to produce THz electromagnetic radiation. The ability to generate coherent phonons in solids breaks new ground in controlling quantum memories, probing quantum states, realizing non-equilibrium phases of matter, and designing new types of THz optical devices.more » « less
-
Coherent phonons in the Terahertz (THz) regime have gained attention as potential candidates for next-generation high-speed, low-energy information carriers in atomically thin phononic or phonon-integrated on-chip devices. Nevertheless, achieving efficient control of the phonon generation dynamics over THz coherent phonons continues to pose a considerable challenge. In this work, we explore THz coherent phonon generation in exfoliated van der Waals (vdW) flakes of WSe2 on Au (WSe2/Au) and Si (WSe2/Si) by using time-resolved pump–probe spectroscopy. The generation of THz coherent phonons was studied as a function of the WSe2 layer thickness and laser wavelength. Notably, a significant enhancement in THz coherent phonon generation was observed in the WSe2/Au structure, but only within a specific range of WSe2 thicknesses and laser wavelengths. The results from numerical simulations, which consider a self-hybridized optical cavity depending on WSe2 thickness and optical reflectance and Raman spectroscopy measurements, all align well with the time-domain observations of THz coherent phonon generation. We propose that the observed enhancement in THz coherent phonon generation is strongly influenced by light–matter interactions in the WSe2 cavity, a mechanism that may be applicable to a broader range of vdW materials. These findings offer promising insights for the development of THz phononic or phonon-integrated devices.more » « less
-
Abstract The coupling of phonons to electrons and other phonons plays a defining role in material properties, such as charge and energy transport, light emission, and superconductivity. In atomic solids, phonons are delocalized over the 3D lattice, in contrast to molecular solids where localized vibrations dominate. Here, a hierarchical semiconductor that expands the phonon space by combining localized 0D modes with delocalized 2D and 3D modes is described. This material consists of superatomic building blocks (Re6Se8) covalently linked into 2D sheets that are stacked into a layered van der Waals lattice. Using transient reflectance spectroscopy, three types of coherent phonons are identified: localized 0D breathing modes of isolated superatom, 2D synchronized twisting of superatoms in layers, and 3D acoustic interlayer deformation. These phonons are coupled to the electronic degrees of freedom to varying extents. The presence of local phonon modes in an extended crystal opens the door to controlling material properties from hierarchical phonon engineering.more » « less
-
Abstract Optical manipulation of coherent phonon frequency in two-dimensional (2D) materials could advance the development of ultrafast phononics in atomic-thin platforms. However, conventional approaches for such control are limited to doping, strain, structural or thermal engineering. Here, we report the experimental observation of strong laser-polarization control of coherent phonon frequency through time-resolved pump-probe spectroscopic study of van der Waals (vdW) materials Fe 3 GeTe 2 . When the polarization of the pumping laser with tilted incidence is swept between in-plane and out-of-plane orientations, the frequencies of excited phonons can be monotonically tuned by as large as 3% (~100 GHz). Our first-principles calculations suggest the strong planar and vertical inter-atomic interaction asymmetry in layered materials accounts for the observed polarization-dependent phonon frequencies, as in-plane/out-of-plane polarization modifies the restoring force of the lattice vibration differently. Our work provides insightful understanding of the coherent phonon dynamics in layered vdW materials and opens up new avenues to optically manipulating coherent phonons.more » « less
An official website of the United States government
