skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding the Extreme Spread in Climate Sensitivity within the Radiative‐Convective Equilibrium Model Intercomparison Project
Abstract The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) consists of simulations at three fixed sea‐surface temperatures (SSTs: 295, 300, and 305 K) and thus allows for a calculation of the climate feedback parameter based on the change of the top‐of‐atmosphere radiation imbalance. Climate feedback parameters range widely across RCEMIP, roughly from−6 to 3 W m−2 K−1, particularly across general‐circulation models (GCMs) as well as global and large‐domain cloud‐resolving models (CRMs). Small‐domain CRMs and large‐eddy simulations have a smaller range of climate feedback parameters due to the absence of convective self‐aggregation. More than 70–80% of the intermodel spread in the climate feedback parameter can be explained by the combined temperature dependencies of convective aggregation and shallow cloud fraction. Low climate sensitivities are associated with an increase of shallow cloud fraction (increasing the planetary albedo) and/or an increase in convective aggregation with warming. An increase in aggregation is associated with an increase in outgoing longwave radiation, caused primarily by mid‐tropospheric drying, and secondarily by an expansion of subsidence regions. Climate sensitivity is neither dependent on the average amount of aggregation nor on changes in deep/anvil cloud fraction. GCMs have a lower overall climate sensitivity than CRMs because in most GCMs convective aggregation increases with warming, whereas in CRMs, convective aggregation shows no consistent temperature trend.  more » « less
Award ID(s):
1830724
PAR ID:
10365000
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
12
Issue:
10
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) is an intercomparison of multiple types of numerical models configured in radiative‐convective equilibrium (RCE). RCE is an idealization of the tropical atmosphere that has long been used to study basic questions in climate science. Here, we employ RCE to investigate the role that clouds and convective activity play in determining cloud feedbacks, climate sensitivity, the state of convective aggregation, and the equilibrium climate. RCEMIP is unique among intercomparisons in its inclusion of a wide range of model types, including atmospheric general circulation models (GCMs), single column models (SCMs), cloud‐resolving models (CRMs), large eddy simulations (LES), and global cloud‐resolving models (GCRMs). The first results are presented from the RCEMIP ensemble of more than 30 models. While there are large differences across the RCEMIP ensemble in the representation of mean profiles of temperature, humidity, and cloudiness, in a majority of models anvil clouds rise, warm, and decrease in area coverage in response to an increase in sea surface temperature (SST). Nearly all models exhibit self‐aggregation in large domains and agree that self‐aggregation acts to dry and warm the troposphere, reduce high cloudiness, and increase cooling to space. The degree of self‐aggregation exhibits no clear tendency with warming. There is a wide range of climate sensitivities, but models with parameterized convection tend to have lower climate sensitivities than models with explicit convection. In models with parameterized convection, aggregated simulations have lower climate sensitivities than unaggregated simulations. 
    more » « less
  2. Abstract. The radiative–convective equilibrium (RCE) model intercomparison project (RCEMIP) leveraged the simplicity of RCE to focus attention on moist convective processes and their interactions with radiation and circulation across a wide range of model types including cloud-resolving models (CRMs), general circulation models (GCMs), single-column models, global cloud-resolving models, and large-eddy simulations. While several robust results emerged across the spectrum of models that participated in the first phase of RCEMIP (RCEMIP-I), two points that stand out are (1) the strikingly large diversity in simulated climate states and (2) the strong imprint of convective self-aggregation on the climate state. However, the lack of consensus in the structure of self-aggregation and its response to warming is a barrier to understanding. Gaining a deeper understanding of convective aggregation and tropical climate will require reducing the degrees of freedom with which convection can vary. Therefore, we propose phase II of RCEMIP (RCEMIP-II) that utilizes a prescribed sinusoidal sea surface temperature (SST) pattern to provide a constraint on the structure of convection and move one critical step up the model hierarchy. This so-called “mock-Walker” configuration generates features that resemble observed tropical circulations. The specification of the mock-Walker protocol for RCEMIP-II is described, along with example results from one CRM and one GCM. RCEMIP-II will consist of five required simulations: three simulations with the same three mean SSTs as in RCEMIP-I but with an SST gradient and two additional simulations at one of the mean SSTs with different values of the SST gradients. We also test the sensitivity to the imposed SST gradient and the domain size. Under weak SST gradients, unforced self-aggregation emerges across the entire domain, similar to what was found in RCEMIP. As the SST gradient increases, the convective region narrows and is more confined to the warmest SSTs. At warmer mean SSTs and stronger SST gradients, low-frequency variability in the convective aggregation emerges, suggesting that simulations of at least 200 d may be needed to achieve robust equilibrium statistics in this configuration. Simulations with different domain sizes generally have similar mean statistics and convective structures, depending on the value of the SST gradient. The prescribed SST boundary condition is the only difference in the set-up between RCEMIP-II and RCEMIP-I, which enables comparison between the two; however, we also welcome participation in RCEMIP-II from models that did not participate in RCEMIP-I. 
    more » « less
  3. Abstract Modeling experiments and field campaigns have evaluated shallow convective mixing as a potential constraint on the low‐cloud climate feedback, which is critical for establishing climate sensitivity. Yet the apparent relationship between low‐cloud fraction and shallow convective mixing differs substantially among general circulation models (GCMs), large eddy simulations, and both remote sensing and in situ observations. Here, we consider how changes in GCMs' representations of subgrid‐scale vertical moist fluxes can alter the cloud‐mixing relationship. Using vertical profiles of water vapor isotope ratios (δD) to characterize the strength of shallow convective mixing in a manner that can be compared directly to satellite observations, we evaluate the cloud‐mixing relationship produced in tiered experiments with the Community Atmosphere Model (CAM). From versions 5 to 6 of CAM, the most notable physics change is CLUBB, a scheme that unifies the representation of shallow convection and boundary layer turbulence through a joint probability density function (PDF) for subgrid velocity and moisture. CLUBB reduces the covariance between low‐cloud fraction and shallow convective mixing, producing a bivariate distribution that is more similar in character to monthly averaged satellite observations. Using parameter sensitivity experiments, we argue that CLUBB's ability to simulate skewness in the distribution of vertical velocity produces more isolated but stronger moist updrafts, which reduce the grid‐mean low‐cloud fraction while maintaining efficient hydrological connectivity between the boundary layer and the free troposphere. These results suggest that mixing is not an effective predictor of low‐cloud feedback in GCMs with PDF closure schemes. 
    more » « less
  4. Abstract Characteristics of, and fundamental differences between, the radiative‐convective equilibrium (RCE) climate states following the Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) protocols in the Community Atmosphere Model version 5 (CAM5) and version 6 (CAM6) are presented. This paper explores the characteristics of clouds, moisture, precipitation and circulation in the RCE state, as well as the tropical response to surface warming, in CAM5 and CAM6 with different parameterizations. Overall, CAM5 simulates higher precipitation rates that result in larger global average precipitation, despite lower outgoing longwave radiation compared to CAM6. Differences in the structure of clouds, particularly the amount and vertical location of cloud liquid, exist between the CAM versions and can, in part, be related to distinct representations of shallow convection and boundary layer processes. Both CAM5 and CAM6 simulate similar peaks in cloud fraction, relative humidity, and cloud ice, linked to the usage of a similar deep convection parameterization. These anvil clouds rise and decrease in extent in response to surface warming. More generally, extreme precipitation, aggregation of convection, and climate sensitivity increase with warming in both CAM5 and CAM6. This analysis provides a benchmark for future studies that explore clouds, convection, and climate in CAM with the RCEMIP protocols now available in the Community Earth System Model. These results are discussed within the context of realistic climate simulations using CAM5 and CAM6, highlighting the usefulness of a hierarchical modeling approach to understanding model and parameterization sensitivities to inform model development efforts. 
    more » « less
  5. Abstract The Walker circulation connects the regions with deep atmospheric convection in the western tropical Pacific to the shallow‐convection, tropospheric subsidence, and stratocumulus cloud decks of the eastern Pacific. The purpose of this study is to better understand the multi‐scale interactions between the Walker circulation, cloud systems, and interactive radiation. To do this we simulate a mock‐Walker Circulation with a full‐physics general circulation model using idealized boundary conditions. Our experiments use a doubly‐periodic domain with grid‐spacing of 1, 2, 25, and 100 km. We thus span the range from General Circulation Models (GCMs) to Cloud‐system Resolving Models (CRMs). Our model is derived from the Geophysical Fluid Dynamics Laboratory atmospheric GCM (AM4.0). We find substantial differences in the mock‐Walker circulation simulated by our GCM‐like and CRM‐like experiments. The CRM‐like experiments have more upper level clouds, stronger overturning circulations, and less precipitation. The GCM‐like experiments have a low‐level cloud fraction that is up to 20% larger. These differences leads to opposite atmospheric responses to changes in the longwave cloud radiative effect (LWCRE). Active LWCRE leads to increased precipitation for our GCMs, but decreased precipitation for our CRMs. The LWCRE leads to a narrower rising branch of the circulation and substantially increases the fraction of precipitation from the large‐scale cloud parameterization. This work demonstrates that a mock‐Walker circulation is a useful generalization of radiative convective equilibrium that includes a large‐scale circulation. 
    more » « less