skip to main content


Title: Mean Climate and Tropical Rainfall Variability in Aquaplanet Simulations Using the Model for Prediction Across Scales‐Atmosphere
Abstract

Aquaplanet experiments are important tools for understanding and improving physical processes simulated by global models; yet, previous aquaplanet experiments largely differ in their representation of subseasonal tropical rainfall variability. This study presents results from aquaplanet experiments produced with the Model for Prediction Across Scales‐Atmosphere (MPAS‐A)—a community model specifically designed to study weather and climate in a common framework. The mean climate and tropical rainfall variability simulated by MPAS‐A with varying horizontal resolution were compared against results from a recent suite of aquaplanet experiments. This comparison shows that, regardless of horizontal resolution, MPAS‐A produces the expected mean climate of an aquaplanet framework with zonally symmetric but meridionally varying sea‐surface temperature. MPAS‐A, however, has a stronger signal of tropical rainfall variability driven by convectively coupled equatorial waves. Sensitivity experiments with different cumulus parameterizations, physics packages, and vertical grids consistently show the presence of those waves, especially equatorial Kelvin waves, in phase with lower‐tropospheric convergence. Other models do not capture such rainfall‐kinematics phasing. These results suggest that simulated tropical rainfall variability depends not only on the cumulus parameterization (as suggested by previous studies) but also on the coupling between physics and dynamics of climate and weather prediction models.

 
more » « less
NSF-PAR ID:
10365106
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
12
Issue:
10
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tropical weather phenomena—including tropical cyclones (TCs) and equatorial waves—are influenced by planetary‐to‐convective‐scale processes; yet, existing data sets and tools can only capture a subset of those processes. This study introduces a convection‐permitting aquaplanet simulation that can be used as a laboratory to study TCs, equatorial waves, and their interactions. The simulation was produced with the Model for Prediction Across Scales‐Atmosphere (MPAS‐A) using a variable resolution mesh with convection‐permitting resolution (i.e., 3‐km cell spacing) between 10°S and 30°N. The underlying sea‐surface temperature is given by a zonally symmetric profile with a peak at 10°N, which allows for the formation of TCs. A comparison between the simulation and satellite, reanalysis, and airborne dropsonde data is presented to determine the realism of the simulated phenomena. The simulation captures a realistic TC intensity distribution, including major hurricanes, but their lifetime maximum intensities may be limited by the stronger vertical wind shear in the simulation compared to the observed tropical Pacific region. The simulation also captures convectively coupled equatorial waves, including Kelvin waves and easterly waves. Despite the idealization of the aquaplanet setup, the simulated three‐dimensional structure of both groups of waves is consistent with their observed structure as deduced from satellite and reanalysis data. Easterly waves, however, have peak rotation and meridional winds at a slightly higher altitude than in the reanalysis. Future studies may use this simulation to understand how convectively coupled equatorial waves influence the multi‐scale processes leading to tropical cyclogenesis.

     
    more » « less
  2. Abstract

    The spontaneous self-aggregation (SA) of convection in idealized model experiments highlights the importance of interactions between tropical convection and the surrounding environment. The authors have shown that SA fundamentally changes with the background rotation in previousf-plane simulations, in terms of both the resulting forms of organized convection and the relative roles of the physical feedbacks driving them. This study considers the dependence of SA on rotation in one large domain on theβplane, introducing an additional layer of complexity. Simulations are performed with uniform thermal forcing and explicit convection. Focuses include statistical and structural analysis of the convective modes, process-oriented diagnostics of how they develop, and resulting mean states. Two regimes of SA emerge within the first 15 days, separated by a critical zone wherefis analogous to 10°–15° latitude. Organized convection at near-equatorial values offprimarily consists of convectively coupled Kelvin waves. Wind speed–surface enthalpy flux feedbacks are the dominant process driving moisture variability early on, then clear-sky shortwave radiative feedbacks are strongest in wave maintenance. In contrast, at higherf, numerous tropical cyclones develop and coexist, dominated by surface flux and longwave processes. Tropical cyclogenesis is most pronounced at intermediatef(analogous to 25°–40°), but are longer-lived at higherf. The resulting modes of SA at lowfdiffer between theseβ-plane simulations (convectively coupled waves) and priorf-plane simulations (weak tropical cyclones or nonrotating clusters). Otherwise, these results provide further evidence for the changing roles of radiative, surface flux, and advective processes in influencing SA asfchanges, as found in our previous study.

    Significance Statement

    In model simulations, convection often self-organizes due to interactions with its surrounding environment. These interactions are relevant in the real-world organization of rainfall and clouds, and may thus be useful to understand for improved prediction of tropical weather and climate. Previous work using a set of simple model experiments with constant Coriolis force showed that at different latitudes, different processes dominate, and different types of organized convection result. This study verifies that finding using a more complex and realistic model, where the Coriolis force varies within the domain to resemble different latitudes. Specifically, the convection here self-organizes into atmospheric waves (periodic disturbances) at low latitudes, and tropical cyclones at high latitudes.

     
    more » « less
  3. Abstract

    This study investigates the effects of resolved deep convection on tropical rainfall and its multi‐scale variability. A series of aquaplanet simulations are analyzed using the Model for Prediction Across Scales‐Atmosphere with horizontal cell spacings from 120 to 3 km. The 3‐km experiment uses a novel configuration with 3‐km cell spacing between 20°S and 20°N and 15‐km cell spacing poleward of 30°N/S. A comparison of those experiments shows that resolved deep convection yields a narrower, stronger, and more equatorward intertropical convergence zone, which is supported by stronger nonlinear horizontal momentum advection in the boundary layer. There is also twice as much tropical rainfall variance in the experiment with resolved deep convection than in the experiments with parameterized convection. All experiments show comparable precipitation variance associated with Kelvin waves; however, the experiment with resolved deep convection shows higher precipitation variance associated with westward propagating systems. Resolved deep convection also yields at least two orders of magnitude more frequent heavy rainfall rates (>2 mm hr−1) than the experiments with parameterized convection. A comparison of organized precipitation systems demonstrates that tropical convection organizes into linear systems that are associated with stronger and deeper cold pools and upgradient convective momentum fluxes when convection is resolved. In contrast, parameterized convection results in more circular systems, weaker cold pools, and downgradient convective momentum fluxes. These results suggest that simulations with parameterized convection are missing an important feedback loop between the mean state, convective organization, and meridional gradients of moisture and momentum.

     
    more » « less
  4. Abstract

    Numerical weather and climate models continue to struggle with simulating equatorial waves and tropical rainfall variability. This study presents a potential remedy—high‐resolution global models with explicitly resolved convection. A series of global nonhydrostatic simulations was produced with horizontal cell spacings between 3.75 and 480 km; the share of resolved precipitation in these simulations ranged from 88% to 2%. The simulations in which convection was mostly resolved produced much more realistic equatorial waves than the simulations in which convection was mostly parameterized. Consequently, the simulations with resolved convection produced more realistic precipitation patterns and precipitation variances. The results demonstrate that high‐resolution global models with explicitly resolved convection are a promising tool to improve tropical weather forecasts and climate projections.

     
    more » « less
  5. Abstract. Simulations of the Indian summer monsoon by the cloud-permitting Weather Research and Forecasting (WRF) model at gray-zone resolution are described in this study, with a particular emphasis on the model ability to capture the monsoon intraseasonal oscillations (MISOs). Five boreal summers are simulated from 2007 to 2011 using the ERA-Interim reanalysis as the lateral boundary forcing data. Our experimental setup relies on a horizontal grid spacing of 9km to explicitly simulate deep convection without the use of cumulus parameterizations. When compared to simulations with coarser grid spacing (27km) and using a cumulus scheme, the 9km simulations reduce the biases in mean precipitation and produce more realistic low-frequency variability associated with MISOs. Results show that the model at the 9km gray-zone resolution captures the salient features of the summer monsoon. The spatial distributions and temporal evolutions of monsoon rainfall in the WRF simulations verify qualitatively well against observations from the Tropical Rainfall Measurement Mission (TRMM), with regional maxima located over Western Ghats, central India, Himalaya foothills, and the west coast of Myanmar. The onset, breaks, and withdrawal of the summer monsoon in each year are also realistically captured by the model. The MISO-phase composites of monsoon rainfall, low-level wind, and precipitable water anomalies in the simulations also agree qualitatively with the observations. Both the simulations and observations show a northeastward propagation of the MISOs, with the intensification and weakening of the Somali Jet over the Arabian Sea during the active and break phases of the Indian summer monsoon.

     
    more » « less