skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Spatially-resolved relation between [C  i ] 3 P 1–3 P 0 and 12CO (1–0) in Arp 220

We present $\sim {0.^{\prime \prime }3}$ (114 pc) resolution maps of [C i] 3P1–3P0 (hereafter [C i] (1–0)) and 12CO (1–0) obtained toward Arp 220 with the Atacama Large Millimeter/submillimeter Array. The overall distribution of the [C i] (1–0) emission is consistent with the CO (1–0). While the [C i] (1–0) and CO (1–0) luminosities of the system follow the empirical linear relation for the unresolved ULIRG sample, we find a sublinear relation between [C i] (1–0) and CO (1–0) using the spatially-resolved data. We measure the [C i] (1–0)$/$CO (1–0) luminosity ratio per pixel in star-forming environments of Arp 220 and investigate its dependence on the CO (3–2)$/$CO (1–0) ratio (RCO). On average, the [C i] (1–0)$/$CO (1–0) luminosity ratio is almost constant up to RCO ≃ 1 and then increases with RCO. According to the radiative transfer analysis, a high C i$/$CO abundance ratio is required in regions with high [C i] (1–0)$/$CO (1–0) luminosity ratios and RCO > 1, suggesting that the C i$/$CO abundance ratio varies at ∼100 pc scale in Arp 220. The [C i] (1–0)$/$CO (1–0) luminosity ratio depends on multiple factors and may not be straightforward to interpret. We also find the high-velocity components traced by [C i] (1–0) in the western nucleus, likely associated with the molecular outflow. The [C i] (1–0)$/$CO (1–0) luminosity ratio in the putative outflow is 0.87 ± 0.28, which is four times higher than the average ratio of Arp 220. While there is a possibility that the [C i] (1–0) and CO (1–0) emission traces different components, we suggest that the high line ratios are likely to be because of elevated C i$/$CO abundance ratios based on our radiative transfer analysis. A C i-rich and CO-poor gas phase in outflows could be caused by the irradiation of the cosmic rays, the shock heating, and the intense radiation field.

more » « less
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Publications of the Astronomical Society of Japan
Medium: X Size: p. 407-420
["p. 407-420"]
Sponsoring Org:
National Science Foundation
More Like this

    Radio-loud active galactic nuclei (RLAGNs) are a unique AGN population and were thought to be preferentially associated with supermassive black holes (SMBHs) at low accretion rates. They could impact the host galaxy evolution by expelling cold gas through the jet-mode feedback. In this work, we studied CO(6−5) line emission and continuum emission in a high-redshift radio galaxy, MRC 0152−209, at z = 1.92 using ALMA (Atacama Large Millimeter/submillimeter Array) up to a 0.024″ resolution (corresponding to ∼200 pc at z = 1.92). This system is a starburst major merger comprising two galaxies: the north-west (NW) galaxy hosting the RLAGN with jet kinetic power Ljet ≳ 2 × 1046  erg s−1 and the other galaxy to the south-east (SE). Based on the spectral energy distribution fitting for the entire system (NW+SE galaxies), we find an AGN bolometric luminosity LAGN, bol ∼ 3 × 1046  erg s−1 with a lower limit of ∼0.9 × 1046  erg s−1 for the RLAGN. We estimate the black hole mass through MBH–M⋆ scaling relations and find an Eddington ratio of λEdd ∼ 0.07–4 conservatively by adopting the lower limit of LAGN, bol and considering the dispersion of the scaling relation. These results suggest that the RLAGN is radiatively efficient and the powerful jets could be launched from a super-Eddington accretion disc. ALMA Cycle 6 observations further reveal a massive (${M}_\mathrm{H_2}=(1.1-2.3)\times 10^9\ \rm M_\odot$), compact (∼500 pc), and monopolar molecular outflow perpendicular to the jet axis. The corresponding mass outflow rate ($1200^{+300}_{-300}-2600^{+600}_{-600}\ \mathrm{M_\odot }\ \rm yr^{-1}$) is comparable with the star formation rate of at least $\sim 2100\ \mathrm{M_\odot }\ \rm yr^{-1}$. Depending on the outflowing molecular gas mass, the outflow kinetic power/LAGN, bol ratio of ∼0.008–0.02, and momentum boost factor of ∼3–24 agree with a radiative-mode AGN feedback scenario. On the other hand, the jets can also drive the molecular outflow within its lifetime of ∼2 × 105 yr without additional energy supply from AGN radiation. The jet-mode feedback is then capable of removing all cold gas from the host galaxy through the long-term, episodic launching of jets. Our study reveals a unique object where starburst activity, powerful jets, and rapid BH growth co-exist, which may represent a fundamental stage of AGN-host galaxy co-evolution.

    more » « less

    We present Trinity, a flexible empirical model that self-consistently infers the statistical connection between dark matter haloes, galaxies, and supermassive black holes (SMBHs). Trinity is constrained by galaxy observables from 0 < z < 10 [galaxies’ stellar mass functions, specific and cosmic star formation rates (SFRs), quenched fractions, and UV luminosity functions] and SMBH observables from 0 < z < 6.5 (quasar luminosity functions, quasar probability distribution functions, active black hole mass functions, local SMBH mass–bulge mass relations, and the observed SMBH mass distributions of high-redshift bright quasars). The model includes full treatment of observational systematics [e.g. active galactic nucleus (AGN) obscuration and errors in stellar masses]. From these data, Trinity infers the average SMBH mass, SMBH accretion rate, merger rate, and Eddington ratio distribution as functions of halo mass, galaxy stellar mass, and redshift. Key findings include: (1) the normalization and the slope of the SMBH mass–bulge mass relation increases mildly from z = 0 to z = 10; (2) The best-fitting AGN radiative+kinetic efficiency is ∼0.05–0.06, but can be in the range ∼0.035–0.07 with alternative input assumptions; (3) AGNs show downsizing, i.e. the Eddington ratios of more massive SMBHs start to decrease earlier than those of lower mass objects; (4) The average ratio between average SMBH accretion rate and SFR is ∼10−3 for low-mass galaxies, which are primarily star-forming. This ratio increases to ∼10−1 for the most massive haloes below z ∼ 1, where star formation is quenched but SMBHs continue to accrete.

    more » « less
  3. We investigate the molecular gas content of z  ∼ 6 quasar host galaxies using the Institut de Radioastronomie Millimétrique Northern Extended Millimeter Array. We targeted the 3 mm dust continuum, and the line emission from CO(6–5), CO(7–6), and [C  I ] 2−1 in ten infrared–luminous quasars that have been previously studied in their 1 mm dust continuum and [C  II ] line emission. We detected CO(7–6) at various degrees of significance in all the targeted sources, thus doubling the number of such detections in z  ∼ 6 quasars. The 3 mm to 1 mm flux density ratios are consistent with a modified black body spectrum with a dust temperature T dust  ∼ 47 K and an optical depth τ ν  = 0.2 at the [C  II ] frequency. Our study provides us with four independent ways to estimate the molecular gas mass, M H2 , in the targeted quasars. This allows us to set constraints on various parameters used in the derivation of molecular gas mass estimates, such as the mass per luminosity ratios α CO and α [CII] , the gas-to-dust mass ratio δ g/d , and the carbon abundance [C]/H 2 . Leveraging either on the dust, CO, [C  I ], or [C  II ] emission yields mass estimates of the entire sample in the range M H2  ∼ 10 10 –10 11 M ⊙ . We compared the observed luminosities of dust, [C  II ], [C  I ], and CO(7–6) with predictions from photo-dissociation and X-ray dominated regions. We find that the former provide better model fits to our data, assuming that the bulk of the emission arises from dense ( n H  > 10 4 cm −3 ) clouds with a column density N H  ∼ 10 23 cm −2 , exposed to a radiation field with an intensity of G 0  ∼ 10 3 (in Habing units). Our analysis reiterates the presence of massive reservoirs of molecular gas fueling star formation and nuclear accretion in z  ∼ 6 quasar host galaxies. It also highlights the power of combined 3 mm and 1 mm observations for quantitative studies of the dense gas content in massive galaxies at cosmic dawn. 
    more » « less
  4. Abstract The spectral line energy distribution of carbon monoxide contains information about the physical conditions of the star-forming molecular hydrogen gas; however, the relation to local radiation field properties is poorly constrained. Using ∼1–2 kpc scale Atacama Large Millimeter Array observations of CO(3−2) and CO(4−3), we characterize the CO(4−3)/CO(3−2) line ratios of local analogues of main-sequence galaxies at z ∼ 1–2, drawn from the DYnamics of Newly Assembled Massive Objects (DYNAMO) sample. We measure CO(4−3)/CO(3−2) across the disk of each galaxy and find a median line ratio of R 43 = 0.54 − 0.15 + 0.16 for the sample. This is higher than literature estimates of local star-forming galaxies and is consistent with multiple lines of evidence that indicate DYNAMO galaxies, despite residing in the local universe, resemble main-sequence galaxies at z ∼ 1–2. Comparing with existing lower-resolution CO(1−0) observations, we find R 41 and R 31 values in the range ∼0.2–0.3 and ∼0.4–0.8, respectively. We combine our kiloparsec-scale resolved line ratio measurements with Hubble Space Telescope observations of H α to investigate the relation to the star formation rate surface density and compare this relation to expectations from models. We find increasing CO(4−3)/CO(3−2) with increasing star formation rate surface density; however, models overpredict the line ratios across the range of star formation rate surface densities we probe, in particular at the lower range. Finally, Stratospheric Observatory for Infrared Astronomy observations with the High-resolution Airborne Wideband Camera Plus and Field-Imaging Far-Infrared Line Spectrometer reveal low dust temperatures and no deficit of [C ii ] emission with respect to the total infrared luminosity. 
    more » « less
  5. Abstract

    Active galactic nucleus (AGN) feedback is postulated as a key mechanism for regulating star formation within galaxies. Studying the physical properties of the outflowing gas from AGNs is thus crucial for understanding the coevolution of galaxies and supermassive black holes. Here we report 55 pc resolution ALMA neutral atomic carbon [Ci]3P13P0observations toward the central 1 kpc of the nearby Type 2 Seyfert galaxy NGC 1068, supplemented by 55 pc resolution CO(J= 1−0) observations. We find that [Ci] emission within the central kiloparsec is strongly enhanced by a factor of >5 compared to the typical [Ci]/CO intensity ratio of ∼0.2 for nearby starburst galaxies (in units of brightness temperature). The most [Ci]-enhanced gas (ratio > 1) exhibits a kiloparsec-scale elongated structure centered at the AGN that matches the known biconical ionized gas outflow entraining molecular gas in the disk. A truncated, decelerating bicone model explains well the kinematics of the elongated structure, indicating that the [Ci] enhancement is predominantly driven by the interaction between the ISM in the disk and the highly inclined ionized gas outflow (which is likely driven by the radio jet). Our results strongly favor the “CO dissociation scenario” rather than the “in situ C formation” one, which prefers a perfect bicone geometry. We suggest that the high-[Ci]/CO intensity ratio gas in NGC 1068 directly traces ISM in the disk that is currently dissociated and entrained by the jet and the outflow, i.e., the “negative” effect of the AGN feedback.

    more » « less