skip to main content

Title: Probing the dark Solar system: detecting binary asteroids with a space-based interferometric asteroid explorer

With the inception of gravitational wave astronomy, astrophysical studies using interferometric techniques have begun to probe previously unknown parts of the Universe. In this work, we investigate the potential of a new interferometric experiment to study a unique group of gravitationally interacting sources within our Solar system: binary asteroids. We present the first study into binary asteroid detection via gravitational signals. We identify the interferometer sensitivity necessary for detecting a population of binary asteroids in the asteroid belt. We find that the space-based gravitational wave detector LISA will have negligible ability to detect these sources as these signals will be well below the LISA noise curve. Consequently, we propose a 4.6 au and a 1 au arm-length interferometer specialized for binary asteroid detection, targeting frequencies between 10−6 and 10−4 Hz. Our results demonstrate that the detection of binary asteroids with space-based gravitational wave interferometers is possible though very difficult, requiring substantially improved interferometric technology over what is presently proposed for space-based missions. If that threshold can be met, an interferometer may be used to map the asteroid belt, allowing for new studies into the evolution of our Solar system.

; ; ; ;
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 3738-3753
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Future searches for gravitational waves from space will be sensitive to double compact objects in our Milky Way. We present new simulations of the populations of double black holes (BHBHs), BH neutron stars (BHNSs), and double neutron stars (NSNSs) that will be detectable by the planned space-based gravitational-wave detector called Laser Interferometer Space Antenna (LISA). For our estimates, we use an empirically informed model of the metallicity-dependent star formation history of the Milky Way. We populate it using an extensive suite of binary population-synthesis predictions for varying assumptions relating to mass transfer, common-envelope, supernova kicks, remnant masses, and wind mass-loss physics. For a 4(10) yr LISA mission, we predict between 30–370(50–550) detections over these variations, out of which 6–154 (9–238) are BHBHs, 2–198 (3–289) are BHNSs, and 3–35 (4–57) are NSNSs. We expect that about 50% (60%) can be distinguished from double white dwarf sources based on their mass or eccentricity and localization. Specifically, for about 10% (15%), we expect to be able to determine chirp masses better than 10%. For 13% (13%), we expect sky-localizations better than 1°. We discuss how the variations in the physics assumptions alter the distribution of properties of the detectable systems, even whenmore »the detection rates are unchanged. We further discuss the possibility of multimessenger observations of pulsar populations with the Square Kilometre Array and assess the benefits of extending the LISA mission.

    « less
  2. Abstract Near-Earth Objects (NEOs) are a transient population of small bodies with orbits near or in the terrestrial planet region. They represent a mid-stage in the dynamical cycle of asteroids and comets, which starts with their removal from the respective source regions—the main belt and trans-Neptunian scattered disk—and ends as bodies impact planets, disintegrate near the Sun, or are ejected from the solar system. Here we develop a new orbital model of NEOs by numerically integrating asteroid orbits from main-belt sources and calibrating the results on observations of the Catalina Sky Survey. The results imply a size-dependent sampling of the main belt with the ν 6 and 3:1 resonances producing ≃30% of NEOs with absolute magnitudes H = 15 and ≃80% of NEOs with H = 25. Hence, the large and small NEOs have different orbital distributions. The inferred flux of H < 18 bodies into the 3:1 resonance can be sustained only if the main-belt asteroids near the resonance drift toward the resonance at the maximal Yarkovsky rate (≃2 × 10 −4 au Myr −1 for diameter D = 1 km and semimajor axis a = 2.5 au). This implies obliquities θ ≃ 0° for a < 2.5 aumore »and θ ≃ 180° for a > 2.5 au, both in the immediate neighborhood of the resonance (the same applies to other resonances as well). We confirm the size-dependent disruption of asteroids near the Sun found in previous studies. An interested researcher can use the publicly available NEOMOD Simulator to generate user-defined samples of NEOs from our model.« less

    The launch of space-based gravitational-wave (GW) detectors (e.g. Laser Interferometry Space Antenna; LISA) and current and upcoming Pulsar Timing Arrays will extend the GW window to low frequencies, opening new investigations into dynamical processes involving massive black hole binaries (MBHBs) and their mergers across cosmic time. MBHBs are expected to be among the primary sources for the upcoming low-frequency (10−4–10−1 Hz) window probed by LISA. It is important to investigate the expected supermassive BH merger rates and associated signals, to determine how potential LISA events are affected by physics included in current models. To study this, we post-process the large population of MBHBs in the Illustris simulation to account for dynamical friction time delays associated with BH infall/inspiral. We show that merger delays associated with binary evolution have the potential to decrease the expected merger rates, with $M_{\rm {BH}}\ \gt\ 10^6\ \mathrm{M}_\odot$ MBHBs (the lowest mass in Illustris) decreasing from ∼3 to ∼0.1 yr−1, and shifting the merger peak from z ∼2 to ∼1.25. During this time, we estimate that accretion grows the total merging mass by as much as 7x the original mass. Importantly, however, dynamical friction-associated delays (which shift the mergers toward lower redshift and higher masses) leadmore »to a stronger signal/strain for the emitted GWs in the LISA band, increasing mean frequency from 10−3.1 to 10−3.4–10−4.0 Hz, and mean strain from 10−17.2 to 10−16.3–10−15.3. Finally, we show that after including a merger delay and associated MBH growth, mergers still tend to lie on the typical MBH–M* relation, but with an increased likelihood of an undermassive BH.

    « less

    White dwarf binaries with orbital periods below 1 h will be the most numerous sources for the space-based gravitational wave detector Laser Interferometer Space Antenna (LISA). Based on thousands of individually resolved systems, we will be able to constrain binary evolution and provide a new map of the Milky Way and its close surroundings. In this paper we predict the main properties of populations of different types of detached white dwarf binaries detected by LISA over time. For the first time, we combine a high-resolution cosmological simulation of a Milky Way-mass galaxy (taken from the FIRE project) with a binary population synthesis model for low- and intermediate-mass stars. Our Galaxy model therefore provides a cosmologically realistic star formation and metallicity history for the Galaxy and naturally produces its different components such as the thin and thick disc, the bulge, the stellar halo, and satellite galaxies and streams. Thanks to the simulation, we show how different Galactic components contribute differently to the gravitational wave signal, mostly due to their typical age and distance distributions. We find that the dominant LISA sources will be He–He double white dwarfs (DWDs) and He–CO DWDs with important contributions from the thick disc and bulge. The resulting sky map ofmore »the sources is different from previous models, with important consequences for the searches for electromagnetic counterparts and data analysis. We also emphasize that much of the science-enabling information regarding white dwarf binaries, such as the chirp mass and the sky localization, becomes increasingly rich with long observations, including an extended mission up to 8 yr.

    « less
  5. Abstract

    We report the discovery of ZTF J0127+5258, a compact mass-transferring binary with an orbital period of 13.7 minutes. The system contains a white dwarf accretor, which likely originated as a post–common envelope carbon–oxygen (CO) white dwarf, and a warm donor (Teff,donor= 16,400 ± 1000 K). The donor probably formed during a common envelope phase between the CO white dwarf and an evolving giant that left behind a helium star or white dwarf in a close orbit with the CO white dwarf. We measure gravitational wave–driven orbital inspiral with ∼51σsignificance, which yields a joint constraint on the component masses and mass transfer rate. While the accretion disk in the system is dominated by ionized helium emission, the donor exhibits a mixture of hydrogen and helium absorption lines. Phase-resolved spectroscopy yields a donor radial velocity semiamplitude of 771 ± 27 km s−1, and high-speed photometry reveals that the system is eclipsing. We detect a Chandra X-ray counterpart withLX∼ 3 × 1031erg s−1. Depending on the mass transfer rate, the system will likely either evolve into a stably mass-transferring helium cataclysmic variable, merge to become an R CrB star, or explode as a Type Ia supernova in the next million years. Wemore »predict that the Laser Space Interferometer Antenna (LISA) will detect the source with a signal-to-noise ratio of 24 ± 6 after 4 yr of observations. The system is the first LISA-loud mass-transferring binary with an intrinsically luminous donor, a class of sources that provide the opportunity to leverage the synergy between optical and infrared time domain surveys, X-ray facilities, and gravitational-wave observatories to probe general relativity, accretion physics, and binary evolution.

    « less