The existing vehicle obstacle avoidance path planning methods generally aim at obtaining the collision-free path, ignoring the impact of the planned path on the vehicle stability in the obstacle avoidance process, so that the controlled vehicle has the risk of rollover in the obstacle avoidance process. To solve the above problems, a two-layer obstacle avoidance path planning algorithm considering path pre-planning and re-planning is proposed in this paper. In the path pre-planning layer, an improved APF algorithm with road boundary function constraints is proposed. By introducing the repulsion field adjustment factor, the shortcomings of GNRON and local optimization existing in the existing artificial potential field method are effectively solved. In the path re-planning layer, taking the rollover stability index as the constraint, a pre-planning result optimization method based on particle swarm optimization algorithm is proposed. The simulation results show that the obstacle avoidance path planning algorithm proposed in this paper can not only generate the obstacle avoidance path in real-time, but also reduce the yaw rate and yaw angle of the main vehicle in the process of obstacle avoidance, and effectively improve the rollover stability of the vehicle in the process of obstacle avoidance.
more » « less- NSF-PAR ID:
- 10365695
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
- ISSN:
- 0954-4070
- Page Range / eLocation ID:
- Article No. 095440702210883
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In this paper, we introduce the design and implementation of a low-cost, small-scale autonomous vehicle equipped with an onboard computer, a camera, a Lidar, and some other accessories. We implement various autonomous driving-related modules including mapping and localization, object detection, obstacle avoidance, and path planning. In order to better test the system, we focus on the autonomous parking scenario. In this scenario, the vehicle is able to move from an appointed start point to the desired parking lot autonomously by following a path planned by the hybrid A* algorithm. The vehicle is able to detect objects and avoid obstacles on its path and achieve autonomous parking.more » « less
-
Worm-like robots have demonstrated great potential in navigating through environments requiring body shape deformation. Some examples include navigating within a network of pipes, crawling through rubble for search and rescue operations, and medical applications such as endoscopy and colonoscopy. In this work, we developed path planning optimization techniques and obstacle avoidance algorithms for the peristaltic method of locomotion of worm-like robots. Based on our previous path generation study using a modified rapidly exploring random tree (RRT), we have further introduced the Bézier curve to allow more path optimization flexibility. Using Bézier curves, the path planner can explore more areas and gain more flexibility to make the path smoother. We have calculated the obstacle avoidance limitations during turning tests for a six-segment robot with the developed path planning algorithm. Based on the results of our robot simulation, we determined a safe turning clearance distance with a six-body diameter between the robot and the obstacles. When the clearance is less than this value, additional methods such as backward locomotion may need to be applied for paths with high obstacle offset. Furthermore, for a worm-like robot, the paths of subsequent segments will be slightly different than the path of the head segment. Here, we show that as the number of segments increases, the differences between the head path and tail path increase, necessitating greater lateral clearance margins.more » « less
-
A bounded cost path planning method is developed for underwater vehicles assisted by a data-driven flow modeling method. The modeled flow field is partitioned as a set of cells of piece-wise constant flow speed. A flow partition algorithm and a parameter estimation algorithm are proposed to learn the flow field structure and parameters with justified convergence. A bounded cost path planning algorithm is developed taking advantage of the partitioned flow model. An extended potential search method is proposed to determine the sequence of partitions that the optimal path crosses. The optimal path within each partition is then determined by solving a constrained optimization problem. Theoretical justification is provided for the proposed extended potential search method generating the optimal solution. The path planned has the highest probability to satisfy the bounded cost constraint. The performance of the algorithms is demonstrated with experimental and simulation results, which show that the proposed method is more computationally efficient than some of the existing methods.more » « less
-
null (Ed.)Robot motion planning is one of the important elements in robotics. In environments full of obstacles, it is always challenging to find a collision-free and dynamically feasible path between the robot's initial configuration and goal configuration. While many motion planning algorithms have been proposed in the past, each of them has its pros and cons. This work presents a benchmark which implements and compares existing planning algorithms on a variety of problems with extensive simulation. Based on that, we also propose a hybrid planning algorithm, RRT*-CFS, that combines the merits of sampling-based planning methods and optimization-based planning methods. The first layer, RRT*, quickly samples a semi-optimal path. The second layer, CFS, performs sequential convex optimization given the reference path from RRT*. The proposed RRT*-CFS has feasibility and convergence guarantees. Simulation results show that RRT*-CFS benefits from the hybrid structure and performs robustly in various scenarios including the narrow passage problems.more » « less
-
A framework for autonomous waypoint planning, trajectory generation through waypoints, and trajectory tracking for multi-rotor unmanned aerial vehicles (UAVs) is proposed in this work. Safe and effective operations of these UAVs is a problem that demands obstacle avoidance strategies and advanced trajectory planning and control schemes for stability and energy efficiency. To address this problem, a two-level optimization strategy is used for trajectory generation, then the trajectory is tracked in a stable manner. The framework given here consists of the following components: (a) a deep reinforcement learning (DRL)-based algorithm for optimal waypoint planning while minimizing control energy and avoiding obstacles in a given environment; (b) an optimal, smooth trajectory generation algorithm through waypoints, that minimizes a combinaton of velocity, acceleration, jerk and snap; and (c) a stable tracking control law that determines a control thrust force for an UAV to track the generated trajectory.more » « less