skip to main content


Title: Variability Timescales of Hα on Active Mid-to-late M dwarfs
Abstract

We present a study of the variation timescales of the chromospheric activity indicator Hαon a sample of 13 fully convective, active mid-to-late M stars with masses between 0.1 and 0.3 solar masses. Our goal was to determine the dominant variability timescale and, by inference, a possible mechanism responsible for the variation. We gathered 10 or more high-resolution spectra each of 10 stars using the TRES spectrograph at times chosen to span all phases of stellar rotation, as determined from photometric data from the MEarth Observatories. All stars varied in their Hαemission. For nine of these stars, we found no correlation between Hαand rotational phase, indicating that constant emission from fixed magnetic structures, such as star spots and plage, are unlikely to be the dominant source of Hαemission variability. In contrast, one star, G 7–34, shows a clear relationship between Hαand stellar rotational phase. Intriguingly, we found that this star is a member of the AB Doradus moving group and hence has the young age of 149 Myr. High-cadence spectroscopic observations of three additional stars revealed that they are variable on timescales ranging from 20 to 45 minutes, which we posit may be due to flaring behavior. For one star, GJ 1111, simultaneous TESS photometry and spectroscopic monitoring show an increase in Hαemission with increased photometric brightness. We conclude that low-energy flares are able to produce variation in Hαon the timescales we observe and thus may be the dominant source of Hαvariability on active fully convective M dwarfs.

 
more » « less
PAR ID:
10365988
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
928
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 185
Size(s):
Article No. 185
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the first estimate of the intrinsic binary fraction of young stars across the central ≈0.4 pc surrounding the supermassive black hole (SMBH) at the Milky Way Galactic center (GC). This experiment searched for photometric variability in 102 spectroscopically confirmed young stars, using 119 nights of 10″ wide adaptive optics imaging observations taken at W. M. Keck Observatory over 16 yr in theK-[2.1μm] andH-[1.6μm] bands. We photometrically detected three binary stars, all of which are situated more than 1″ (0.04 pc) from the SMBH and one of which, S2-36, is newly reported here with spectroscopic confirmation. All are contact binaries or have photometric variability originating from stellar irradiation. To convert the observed binary fraction into an estimate of the underlying binary fraction, we determined the experimental sensitivity through detailed light-curve simulations, incorporating photometric effects of eclipses, irradiation, and tidal distortion in binaries. The simulations assumed a population of young binaries, with stellar ages (4 Myr) and masses matched to the most probable values measured for the GC young star population, and underlying binary system parameters (periods, mass ratios, and eccentricities) similar to those of local massive stars. As might be expected, our experimental sensitivity decreases for eclipses narrower in phase. The detections and simulations imply that the young, massive stars in the GC have a stellar binary fraction ≥71% (68% confidence), or ≥42% (95% confidence). This inferred GC young star binary fraction is consistent with that typically seen in young stellar populations in the solar neighborhood. Furthermore, our measured binary fraction is significantly higher than that recently reported by Chu et al. based on radial velocity measurements for stars ≲1″ of the SMBH. Constrained with these two studies, the probability that the same underlying young star binary fraction extends across the entire region is <1.4%. This tension provides support for a radial dependence of the binary star fraction, and therefore, for the dynamical predictions of binary merger and evaporation events close to the SMBH.

     
    more » « less
  2. Abstract

    We present spectroscopic chemical abundances of red giant branch stars in Andromeda (M31), using medium-resolution (R∼ 6000) spectra obtained via the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo survey. In addition to individual chemical abundances, we coadd low signal-to-noise ratio spectra of stars to obtain a high enough signal to measure average [Fe/H] and [α/Fe] abundances. We obtain individual and coadded measurements for [Fe/H] and [α/Fe] for M31 halo stars, covering a range of 9–180 kpc in projected radius from the center of M31. With these measurements, we greatly increase the number of outer halo (Rproj> 50 kpc) M31 stars with spectroscopic [Fe/H] and [α/Fe], adding abundance measurements for 45 individual stars and 33 coadds from a pool of an additional 174 stars. We measure the spectroscopic metallicity ([Fe/H]) gradient, finding a negative radial gradient of −0.0084 ± 0.0008 for all stars in the halo, consistent with gradient measurements obtained using photometric metallicities. Using the first measurements of [α/Fe] for M31 halo stars covering a large range of projected radii, we find a positive gradient (+0.0027 ± 0.0005) in [α/Fe] as a function of projected radius. We also explore the distribution in [Fe/H]–[α/Fe] space as a function of projected radius for both individual and coadded measurements in the smooth halo, and compare these measurements to those stars potentially associated with substructure. These spectroscopic abundance distributions add to existing evidence that M31 has had an appreciably different formation and merger history compared to our own Galaxy.

     
    more » « less
  3. Abstract

    Precise, high-cadence, long-term records of stellar spectral variability at different temporal scales lead to better understanding of a wide variety of phenomena including stellar atmospheres and dynamos, convective motions, and rotational periods. Here, we investigate the variability of solar Balmer lines (Hα,β,γ,δ) observed by space-borne radiometers (OSIRIS, SCIAMACHY, OMI, and GOME-2), combining these precise, long-term observations with high-resolution data from the ground-based NSO/ISS spectrograph. We relate the detected variability to the appearance of magnetic features on the solar disk. We find that on solar-rotational timescales (about 1 month), the Balmer line activity indices (defined as line-core to line-wing ratios) closely follow variations in the total solar irradiance (which is predominantly photospheric), thus frequently (specifically, during passages of sunspot groups) deviating from behavior of activity indices that track chromospheric activity levels. On longer timescales, the correlation with chromospheric indices increases, with periods of low correlation or even anticorrelation found at intermediate timescales. Comparison of these observations with estimates from semiempirical irradiance reconstructions helps quantify the contributions of different magnetic and quiet features. We conclude that both the lower sensitivity to network and in part the higher sensitivity to filaments and prominences, may result in complex, time-dependent relationships between Balmer and other chromospheric indices observed for the Sun and solar-like stars. The fact that core and wings contribute in a similar manner to the variability, and current knowledge of Balmer-lines formation in stellar atmospheres, supports the notion that Balmer line core-to-wing ratio indices behave more like photospheric rather than chromospheric indices.

     
    more » « less
  4. Abstract

    Using medium-band imaging from the newly released Merian Survey, we conduct a nonparametric morphological analysis of Hαemission maps and stellar continua for a sample of galaxies with8log(M/M)<10.3at 0.064 <z< 0.1. We present a novel method for estimating the stellar continuum emission through the Merian Survey’s N708 medium-band filter, which we use to measure Hαemission and produce Hαmaps for our sample of galaxies with seven-band Merian photometry and available spectroscopy. We measure nonparametric morphological statistics for the Hαand stellar continuum images, explore how the morphology of the Hαdiffers from the continuum, and investigate how the parameters evolve with the galaxies’ physical properties. In agreement with previous results for more massive galaxies, we find that the asymmetry of the stellar continuum increases with specific star formation rate (sSFR), and we extend the trend to lower masses, also showing that it holds for the asymmetry of the Hαemission. We find that the lowest-mass galaxies with the highest sSFR have Hαemission that is consistently heterogeneous and compact, while the less active galaxies in this mass range have Hαemission that appears diffuse. At higher masses, our data do not span a sufficient range in sSFR to evaluate whether similar trends apply. We conclude that high sSFRs in low-mass galaxies likely result from dynamical instabilities that compress a galaxy’s molecular gas to a dense region near the center.

     
    more » « less
  5. ABSTRACT

    Magnetic confinement of stellar winds leads to the formation of magnetospheres, which can be sculpted into centrifugal magnetospheres (CMs) by rotational support of the corotating plasma. The conditions required for the CMs of magnetic early B-type stars to yield detectable emission in H α – the principal diagnostic of these structures – are poorly constrained. A key reason is that no detailed study of the magnetic and rotational evolution of this population has yet been performed. Using newly determined rotational periods, modern magnetic measurements, and atmospheric parameters determined via spectroscopic modelling, we have derived fundamental parameters, dipolar oblique rotator models, and magnetospheric parameters for 56 early B-type stars. Comparison to magnetic A- and O-type stars shows that the range of surface magnetic field strength is essentially constant with stellar mass, but that the unsigned surface magnetic flux increases with mass. Both the surface magnetic dipole strength and the total magnetic flux decrease with stellar age, with the rate of flux decay apparently increasing with stellar mass. We find tentative evidence that multipolar magnetic fields may decay more rapidly than dipoles. Rotational periods increase with stellar age, as expected for a magnetic braking scenario. Without exception, all stars with H α emission originating in a CM are (1) rapid rotators, (2) strongly magnetic, and (3) young, with the latter property consistent with the observation that magnetic fields and rotation both decrease over time.

     
    more » « less