skip to main content


Title: Aerosol size distribution changes in FIREX-AQ biomass burning plumes: the impact of plume concentration on coagulation and OA condensation/evaporation
Abstract. The evolution of organic aerosol (OA) and aerosol sizedistributions within smoke plumes is uncertain due to the variability inrates of coagulation and OA condensation/evaporation between different smokeplumes and at different locations within a single plume. We use aircraftdata from the FIREX-AQ campaign to evaluate differences in evolving aerosolsize distributions, OA, and oxygen to carbon ratios (O:C) between and withinsmoke plumes during the first several hours of aging as a function of smokeconcentration. The observations show that the median particle diameterincreases faster in smoke of a higher initial OA concentration (>1000 µg m−3), with diameter growth of over 100 nm in 8 h – despite generally having a net decrease in OA enhancementratios – than smoke of a lower initial OA concentration (<100 µg m−3), which had net increases in OA. Observations of OA and O:Csuggest that evaporation and/or secondary OA formation was greater in lessconcentrated smoke prior to the first measurement (5–57 min afteremission). We simulate the size changes due to coagulation and dilution andadjust for OA condensation/evaporation based on the observed changes in OA.We found that coagulation explains the majority of the diameter growth, withOA evaporation/condensation having a relatively minor impact. We found thatmixing between the core and edges of the plume generally occurred ontimescales of hours, slow enough to maintain differences in aging betweencore and edge but too fast to ignore the role of mixing for most of our cases.  more » « less
Award ID(s):
1748266 1950327 1950333
NSF-PAR ID:
10366091
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
22
Issue:
19
ISSN:
1680-7324
Page Range / eLocation ID:
12803 to 12825
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Biomass burning emits vapors and aerosols into the atmosphere thatcan rapidly evolve as smoke plumes travel downwind and dilute, affectingclimate- and health-relevant properties of the smoke. To date, theory hasbeen unable to explain observed variability in smoke evolution. Here, we useobservational data from the Biomass BurningObservation Project (BBOP) field campaign and show that initial smokeorganic aerosol mass concentrations can help predict changes in smokeaerosol aging markers, number concentration, and number mean diameterbetween 40–262 nm. Because initial field measurements of plumes aregenerally >10 min downwind, smaller plumes will have alreadyundergone substantial dilution relative to larger plumes and have lowerconcentrations of smoke species at these observations closest to the fire.The extent to which dilution has occurred prior to the first observation isnot a directly measurable quantity. We show that initial observed plumeconcentrations can serve as a rough indicator of the extent of dilutionprior to the first measurement, which impacts photochemistry, aerosolevaporation, and coagulation. Cores of plumes have higher concentrationsthan edges. By segregating the observed plumes into cores and edges, we findevidence that particle aging, evaporation, and coagulation occurred beforethe first measurement. We further find that on the plume edges, the organicaerosol is more oxygenated, while a marker for primary biomass burningaerosol emissions has decreased in relative abundance compared to the plumecores. Finally, we attempt to decouple the roles of the initialconcentrations and physical age since emission by performing multivariatelinear regression of various aerosol properties (composition, size) on thesetwo factors. 
    more » « less
  2. Wildfires are an important atmospheric source of primary organic aerosol (POA) and precursors for secondary organic aerosol (SOA) at regional and global scales. However, there are large uncertainties surrounding the emissions and physicochemical processes that control the transformation, evolution, and properties of POA and SOA in large wildfire plumes. We develop a plume version of a kinetic model to simulate the dilution, oxidation chemistry, thermodynamic properties, and microphysics of organic aerosol (OA) in wildfire smoke. The model is applied to study the in-plume OA in four large wildfire smoke plumes intercepted during an aircraft-based field campaign in summer 2018 in the western United States. Based on estimates of dilution and oxidant concentrations before the aircraft first intercepted the plumes, we simulate the OA evolution from very close to the fire to several hours downwind. Our model results and sensitivity simulations suggest that dilution-driven evaporation of POA and simultaneous photochemical production of SOA are likely to explain the observed evolution in OA mass with physical age. The model, however, substantially underestimates the change in the oxygen-to-carbon ratio of the OA compared to measurements. In addition, we show that the rapid chemical transformation within the first hour after emission is driven by higher-than-ambient OH concentrations (3×10 6 -10 7 molecules cm -3 ) and the slower evolution over the next several hours is a result of lower-than-ambient OH concentrations (<10 6 molecules cm -3 ) and depleted SOA precursors. Model predictions indicate that the OA measured several hours downwind of the fire is still dominated by POA but with an SOA fraction that varies between 30% and 56% of the total OA. Semivolatile, heterocyclic, and oxygenated aromatic compounds, in that order, were found to contribute substantially (>90%) to SOA formation. Future work needs to focus on better understanding the dynamic evolution closer to the fire and resolving the rapid change in the oxidation state of OA with physical age. 
    more » « less
  3. The evolution of organic aerosol (OA) and brown carbon (BrC) in wildfire plumes, including the relative contributions of primary versus secondary sources, has been uncertain in part because of limited knowledge of the precursor emissions and the chemical environment of smoke plumes. We made airborne measurements of a suite of reactive trace gases, particle composition, and optical properties in fresh western US wildfire smoke in July through August 2018. We use these observations to quantify primary versus secondary sources of biomass-burning OA (BBPOA versus BBSOA) and BrC in wildfire plumes. When a daytime wildfire plume dilutes by a factor of 5 to 10, we estimate that up to one-third of the primary OA has evaporated and subsequently reacted to form BBSOA with near unit yield. The reactions of measured BBSOA precursors contribute only 13 ± 3% of the total BBSOA source, with evaporated BBPOA comprising the rest. We find that oxidation of phenolic compounds contributes the majority of BBSOA from emitted vapors. The corresponding particulate nitrophenolic compounds are estimated to explain 29 ± 15% of average BrC light absorption at 405 nm (BrC Abs405) measured in the first few hours of plume evolution, despite accounting for just 4 ± 2% of average OA mass. These measurements provide quantitative constraints on the role of dilution-driven evaporation of OA and subsequent radical-driven oxidation on the fate of biomass-burning OA and BrC in daytime wildfire plumes and point to the need to understand how processing of nighttime emissions differs.

     
    more » « less
  4. Abstract. In mid-August through mid-September of 2017 a major wildfire smoke and hazeepisode strongly impacted most of the NW US and SW Canada. During this periodour ground-based site in Missoula, Montana, experienced heavy smoke impactsfor ∼ 500 h (up to 471 µg m−3 hourly averagePM2.5). We measured wildfire trace gases, PM2.5 (particulate matter≤2.5 µm in diameter), and black carbon and submicron aerosolscattering and absorption at 870 and 401 nm. This may be the most extensivereal-time data for these wildfire smoke properties to date. Our range oftrace gas ratios for ΔNH3∕ΔCO and ΔC2H4∕ΔCO confirmed that the smoke from mixed, multiple sourcesvaried in age from ∼ 2–3 h to ∼ 1–2 days. Our study-averageΔCH4∕ΔCO ratio (0.166±0.088) indicated a largecontribution to the regional burden from inefficient smoldering combustion.Our ΔBC∕ΔCO ratio (0.0012±0.0005) for our groundsite was moderately lower than observed in aircraft studies (∼ 0.0015)to date, also consistent with a relatively larger contribution fromsmoldering combustion. Our ΔBC∕ΔPM2.5 ratio (0.0095±0.0003) was consistent with the overwhelmingly non-BC (black carbon),mostly organic nature of the smoke observed in airborne studies of wildfiresmoke to date. Smoldering combustion is usually associated with enhanced PMemissions, but our ΔPM2.5∕ΔCO ratio (0.126±0.002)was about half the ΔPM1.0∕ΔCO measured in freshwildfire smoke from aircraft (∼ 0.266). Assuming PM2.5 isdominated by PM1, this suggests that aerosol evaporation, at least nearthe surface, can often reduce PM loading and its atmospheric/air-qualityimpacts on the timescale of several days. Much of the smoke was emitted latein the day, suggesting that nighttime processing would be important in theearly evolution of smoke. The diurnal trends show brown carbon (BrC),PM2.5, and CO peaking in the early morning and BC peaking in the earlyevening. Over the course of 1 month, the average single scattering albedo forindividual smoke peaks at 870 nm increased from ∼ 0.9 to ∼ 0.96.Bscat401∕Bscat870 was used as a proxy for the size and“photochemical age” of the smoke particles, with this interpretation beingsupported by the simultaneously observed ratios of reactive trace gases toCO. The size and age proxy implied that the Ångström absorptionexponent decreased significantly after about 10 h of daytime smoke aging,consistent with the only airborne measurement of the BrC lifetime in anisolated plume. However, our results clearly show that non-BC absorption canbe important in “typical” regional haze and moderately aged smoke, with BrCostensibly accounting for about half the absorption at 401 nm on average forour entire data set. 
    more » « less
  5. Abstract

    After smoke from burning biomass is emitted into the atmosphere, chemical and physical processes change the composition and amount of organic aerosol present in the aged, diluted plume. During the fourth Fire Lab at Missoula Experiment, we performed smog‐chamber experiments to investigate formation of secondary organic aerosol (SOA) and multiphase oxidation of primary organic aerosol (POA). We simulated atmospheric aging of diluted smoke from a variety of biomass fuels while measuring particle composition using high‐resolution aerosol mass spectrometry. We quantified SOA formation using a tracer ion for low‐volatility POA as a reference standard (akin to a naturally occurring internal standard). These smoke aging experiments revealed variable organic aerosol (OA) enhancements, even for smoke from similar fuels and aging mechanisms. This variable OA enhancement correlated well with measured differences in the amounts of emitted volatile organic compounds (VOCs) that could subsequently be oxidized to form SOA. For some aging experiments, we were able to predict the SOA production to within a factor of 2 using a fuel‐specific VOC emission inventory that was scaled by burn‐specific toluene measurements. For fires of coniferous fuels that were dominated by needle burning, volatile biogenic compounds were the dominant precursor class. For wiregrass fires, furans were the dominant SOA precursors. We used a POA tracer ion to calculate the amount of mass lost due to gas‐phase oxidation and subsequent volatilization of semivolatile POA. Less than 5% of the POA mass was lost via multiphase oxidation‐driven evaporation during up to 2 hr of equivalent atmospheric oxidation.

     
    more » « less