skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: WACV 2022
Neural networks are vulnerable to a wide range of erroneous inputs such as corrupted, out-of-distribution, misclassified, and adversarial examples. Previously, separate solutions have been proposed for each of these faulty data types, however, in this work we show that a collective set of inputs with variegated data quality issues can be jointly identified with a single model. Specifically, we train a linear SVM classifier to detect four types of erroneous data using the hidden and softmax feature vectors of pre-trained neural networks. Our results indicate that these faulty data types generally exhibit linearly separable activation properties from correctly processed examples. We are able to identify erroneous inputs with an AUROC of 0.973 on CIFAR10, 0.957 on Tiny ImageNet, and 0.941 on ImageNet. We experimentally validate our findings across a diverse range of datasets, domains, and pre-trained models.  more » « less
Award ID(s):
2016714
PAR ID:
10366130
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Workshops, 2022, pp. 34-43
Page Range / eLocation ID:
34-43
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transfer learning using ImageNet pre-trained models has been the de facto approach in a wide range of computer vision tasks. However, fine-tuning still requires task-specific training data. In this paper, we propose N3 (Neural Networks from Natural Language) - a new paradigm of synthesizing task-specific neural networks from language descriptions and a generic pre-trained model. N3 leverages language descriptions to generate parameter adaptations as well as a new task-specific classification layer for a pre-trained neural network, effectively “fine-tuning” the network for a new task using only language descriptions as input. To the best of our knowledge, N3 is the first method to synthesize entire neural networks from natural language. Experimental results show that N3 can out-perform previous natural-language based zero-shot learning methods across 4 different zero-shot image classification benchmarks. We also demonstrate a simple method to help identify keywords in language descriptions leveraged by N3 when synthesizing model parameters. 
    more » « less
  2. Modern image classification systems are often built on deep neural networks, which suffer from adversarial examples—images with deliberately crafted, imperceptible noise to mislead the network’s classification. To defend against adversarial examples, a plausible idea is to obfuscate the network’s gradient with respect to the input image. This general idea has inspired a long line of defense methods. Yet, almost all of them have proven vulnerable. We revisit this seemingly flawed idea from a radically different perspective. We embrace the omnipresence of adversarial examples and the numerical procedure of crafting them, and turn this harmful attacking process into a useful defense mechanism. Our defense method is conceptually simple: before feeding an input image for classification, transform it by finding an adversarial example on a pre- trained external model. We evaluate our method against a wide range of possible attacks. On both CIFAR-10 and Tiny ImageNet datasets, our method is significantly more robust than state-of-the-art methods. Particularly, in comparison to adversarial training, our method offers lower training cost as well as stronger robustness. 
    more » « less
  3. We propose a new computationally efficient method for quantizing the weights of pre- trained neural networks that is general enough to handle both multi-layer perceptrons and convolutional neural networks. Our method deterministically quantizes layers in an iterative fashion with no complicated re-training required. Specifically, we quantize each neuron, or hidden unit, using a greedy path-following algorithm. This simple algorithm is equivalent to running a dynamical system, which we prove is stable for quantizing a single-layer neural network (or, alternatively, for quantizing the first layer of a multi-layer network) when the training data are Gaussian. We show that under these assumptions, the quantization error decays with the width of the layer, i.e., its level of over-parametrization. We provide numerical experiments, on multi-layer networks, to illustrate the performance of our methods on MNIST and CIFAR10 data, as well as for quantizing the VGG16 network using ImageNet data. 
    more » « less
  4. Ames, Daniel P (Ed.)
    Hydrological streamline delineation is critical for effective environmental management, influencing agriculture sustainability, river dynamics, watershed planning, and more. This study develops a novel approach to combining transfer learning with convolutional neural networks that capitalize on image-based pre-trained models to improve the accuracy and transferability of streamline delineation. We evaluate the performance of eleven image-based pre-trained models and a baseline model using datasets from Rowan County, North Carolina, and Covington River, Virginia in the USA. Our results demonstrate that when models are adapted to a new area, the fine-tuned ImageNet pre-trained model exhibits superior predictive accuracy, markedly higher than the models trained from scratch or those only fine-tuned on the same area. Moreover, the pre-trained model achieves better smoothness and connectivity between classified streamline channels. These findings underline the effectiveness of transfer learning in enhancing the delineation of hydrological streamlines across varied geographies, offering a scalable solution for accurate and efficient environmental modelling. 
    more » « less
  5. Deep neural networks (DNNs) are increasingly used in critical applications like autonomous vehicles and medical diagnosis, where accuracy and reliability are crucial. However, debugging DNNs is challenging and expensive, often leading to unpredictable behavior and performance issues. Identifying and diagnosing bugs in DNNs is difficult due to complex and obscure failure symptoms, which are data-driven and compute-intensive. To address this, we propose TransBug a framework that combines transformer models for feature extraction with deep learning models for classification to detect and diagnose bugs in DNNs. We employ a pre-trained transformer model, which has been trained in programming languages, to extract semantic features from both faulty and correct DNN models. We then use these extracted features in a separate deep-learning model to determine whether the code contains bugs. If a bug is detected, the model further classifies the type of bug. By leveraging the powerful feature extraction capabilities of transformers, we capture relevant characteristics from the code, which are then used by a deep learning model to identify and classify various types of bugs. This combination of transformer-based feature extraction and deep learning classification allows our method to accurately link bug symptoms to their causes, enabling developers to take targeted corrective actions. Empirical results show that the TransBug shows an accuracy of 81% for binary classification and 91% for classifying bug types. 
    more » « less