skip to main content


Title: Direct Chemical Vapor Deposition Synthesis of Porous Single‐Layer Graphene Membranes with High Gas Permeances and Selectivities
Abstract

Single‐layer graphene containing molecular‐sized in‐plane pores is regarded as a promising membrane material for high‐performance gas separations due to its atomic thickness and low gas transport resistance. However, typical etching‐based pore generation methods cannot decouple pore nucleation and pore growth, resulting in a trade‐off between high areal pore density and high selectivity. In contrast, intrinsic pores in graphene formed during chemical vapor deposition are not created by etching. Therefore, intrinsically porous graphene can exhibit high pore density while maintaining its gas selectivity. In this work, the density of intrinsic graphene pores is systematically controlled for the first time, while appropriate pore sizes for gas sieving are precisely maintained. As a result, single‐layer graphene membranes with the highest H2/CH4separation performances recorded to date (H2permeance > 4000 GPU and H2/CH4selectivity > 2000) are fabricated by manipulating growth temperature, precursor concentration, and non‐covalent decoration of the graphene surface. Moreover, it is identified that nanoscale molecular fouling of the graphene surface during gas separation where graphene pores are partially blocked by hydrocarbon contaminants under experimental conditions, controls both selectivity and temperature dependent permeance. Overall, the direct synthesis of porous single‐layer graphene exploits its tremendous potential as high‐performance gas‐sieving membranes.

 
more » « less
Award ID(s):
1907716
NSF-PAR ID:
10446378
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
33
Issue:
44
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Graphene oxide (GO) nanosheets stacked in parallel with subnanometer channels can exhibit an excellent size‐sieving ability for membrane‐based gas separation. However, gas molecules have to diffuse through the tortuous nanochannels, leading to low permeability. Herein we demonstrate two versatile approaches to modify the GO (before membrane fabrication by vacuum‐filtration) to collectively increase gas permeability, etching using hydrogen peroxide to generate in‐plane nanopores and acidifying using hydrochloric acid. For example, a membrane prepared at a pH of 5.0 using the 4‐h‐etched GO (HGO‐4h) shows He permeability of 5.3 Barrer and He/CH4selectivity of 800, which are 5 times and 1.5 times those of the GO membranes, respectively. Decreasing the pH from 5.0 to 2.0 for HGO‐4h enhances He permeability to 57 Barrer and He/CH4selectivity to 1,800. The HGO‐4h prepared at the pH of 2.0 exhibits separation properties of H2/CO2, H2/N2, He/N2, and He/CH4surpassing their corresponding upper bounds.

     
    more » « less
  2. Abstract

    The high energy footprint of commodity gas purification and increasing demand for gases require new approaches to gas separation. Kinetic separation of gas mixtures through molecular sieving can enable separation by molecular size or shape exclusion. Physisorbents must exhibit the right pore diameter to enable separation, but the 0.3–0.4 nm range relevant to small gas molecules is hard to control. Herein, dehydration of the ultramicroporous metal–organic framework Ca‐trimesate, Ca(HBTC)⋅H2O (H3BTC=trimesic acid), bnn‐1‐Ca‐H2O, affords a narrow pore variant, Ca(HBTC), bnn‐1‐Ca. Whereas bnn‐1‐Ca‐H2O (pore diameter 0.34 nm) exhibits ultra‐high CO2/N2, CO2/CH4, and C2H2/C2H4binary selectivity, bnn‐1‐Ca (pore diameter 0.31 nm) offers ideal selectivity for H2/CO2and H2/N2under cryogenic conditions. Ca‐trimesate, the first physisorbent to exhibit H2sieving under cryogenic conditions, could be a prototype for a general approach to exert precise control over pore diameter in physisorbents.

     
    more » « less
  3. Abstract

    The high energy footprint of commodity gas purification and increasing demand for gases require new approaches to gas separation. Kinetic separation of gas mixtures through molecular sieving can enable separation by molecular size or shape exclusion. Physisorbents must exhibit the right pore diameter to enable separation, but the 0.3–0.4 nm range relevant to small gas molecules is hard to control. Herein, dehydration of the ultramicroporous metal–organic framework Ca‐trimesate, Ca(HBTC)⋅H2O (H3BTC=trimesic acid), bnn‐1‐Ca‐H2O, affords a narrow pore variant, Ca(HBTC), bnn‐1‐Ca. Whereas bnn‐1‐Ca‐H2O (pore diameter 0.34 nm) exhibits ultra‐high CO2/N2, CO2/CH4, and C2H2/C2H4binary selectivity, bnn‐1‐Ca (pore diameter 0.31 nm) offers ideal selectivity for H2/CO2and H2/N2under cryogenic conditions. Ca‐trimesate, the first physisorbent to exhibit H2sieving under cryogenic conditions, could be a prototype for a general approach to exert precise control over pore diameter in physisorbents.

     
    more » « less
  4. Abstract

    Porous materials capable of selectively capturing CO2from flue‐gases or natural gas are of interest in terms of rising atmospheric CO2levels and methane purification. Size‐exclusive sieving of CO2over CH4and N2has rarely been achieved. Herein we show that a crystal engineering approach to tuning of pore‐size in a coordination network, [Cu(quinoline‐5‐carboxyate)2]n(Qc‐5‐Cu) ena+bles ultra‐high selectivity for CO2over N2(SCN≈40 000) and CH4(SCM≈3300).Qc‐5‐Cu‐sql‐β, a narrow pore polymorph of the square lattice (sql) coordination networkQc‐5‐Cu‐sql‐α,adsorbs CO2while excluding both CH4and N2. Experimental measurements and molecular modeling validate and explain the performance.Qc‐5‐Cu‐sql‐βis stable to moisture and its separation performance is unaffected by humidity.

     
    more » « less
  5. Abstract

    Atomically thin membranes comprising nanopores in a 2D material promise to surpass the performance of polymeric membranes in several critical applications, including water purification, chemical and gas separations, and energy harvesting. However, fabrication of membranes with precise pore size distributions that provide exceptionally high selectivity and permeance in a scalable framework remains an outstanding challenge. Circumventing these constraints, here, a platform technology is developed that harnesses the ability of oppositely charged polyelectrolytes to self‐assemble preferentially across larger, relatively leaky atomically thin nanopores by exploiting the lower steric hindrance of such larger pores to molecular interactions across the pores. By selectively tightening the pore size distribution in this manner, self‐assembly of oppositely charged polyelectrolytes simultaneously introduced on opposite sides of nanoporous graphene membranes is demonstrated to discriminate between nanopores to seal non‐selective transport channels, while minimally compromising smaller, water‐selective pores, thereby remarkably attenuating solute leakage. This improved membrane selectivity enables desalination across centimeter‐scale nanoporous graphene with 99.7% and >90% rejection of MgSO4and NaCl, respectively, under forward osmosis. These findings provide a versatile strategy to augment the performance of nanoporous atomically thin membranes and present intriguing possibilities of controlling reactions across 2D materials via exclusive exploitation of pore size‐dependent intermolecular interactions.

     
    more » « less