skip to main content


Title: Stability of SGD: Tightness analysis and improved bounds
Stochastic Gradient Descent (SGD) based methods have been widely used for training large-scale machine learning models that also generalize well in practice. Several explanations have been offered for this generalization performance, a prominent one being algorithmic stability [18]. However, there are no known examples of smooth loss functions for which the analysis can be shown to be tight. Furthermore, apart from the properties of the loss function, data distribution has also been shown to be an important factor in generalization performance. This raises the question: is the stability analysis of [18] tight for smooth functions, and if not, for what kind of loss functions and data distributions can the stability analysis be improved? In this paper we first settle open questions regarding tightness of bounds in the data-independent setting: we show that for general datasets, the existing analysis for convex and strongly-convex loss functions is tight, but it can be improved for non-convex loss functions. Next, we give a novel and improved data-dependent bounds: we show stability upper bounds for a large class of convex regularized loss functions, with negligible regularization parameters, and improve existing data-dependent bounds in the non-convex setting. We hope that our results will initiate further efforts to better understand the data-dependent setting under non-convex loss functions, leading to an improved understanding of the generalization abilities of deep networks.  more » « less
Award ID(s):
1910873
NSF-PAR ID:
10366270
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Uncertainty in artificial intelligence
ISSN:
1525-3384
Page Range / eLocation ID:
2364--2373
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stochastic Gradient Descent (SGD) based methods have been widely used for training large-scale machine learning models that also generalize well in practice. Several explanations have been offered for this generalization performance, a prominent one being algorithmic stability Hardt et al [2016]. However, there are no known examples of smooth loss functions for which the analysis can be shown to be tight. Furthermore, apart from properties of the loss function, data distribution has also been shown to be an important factor in generalization performance. This raises the question: is the stability analysis of Hardt et al [2016] tight for smooth functions, and if not, for what kind of loss functions and data distributions can the stability analysis be improved? In this paper we first settle open questions regarding tightness of bounds in the data-independent setting: we show that for general datasets, the existing analysis for convex and strongly-convex loss functions is tight, but it can be improved for non-convex loss functions. Next, we give novel and improved data-dependent bounds: we show stability upper bounds for a large class of convex regularized loss functions, with negligible regularization parameters, and improve existing data-dependent bounds in the non-convex setting. We hope that our results will initiate further efforts to better understand the data-dependent setting under non-convex loss functions, leading to an improved understanding of the generalization abilities of deep networks. 
    more » « less
  2. The theory of integral quadratic constraints (IQCs) allows the certification of exponential convergence of interconnected systems containing nonlinear or uncertain elements. In this work, we adapt the IQC theory to study first-order methods for smooth and strongly-monotone games and show how to design tailored quadratic constraints to get tight upper bounds of convergence rates. Using this framework, we recover the existing bound for the gradient method~(GD), derive sharper bounds for the proximal point method~(PPM) and optimistic gradient method~(OG), and provide for the first time a global convergence rate for the negative momentum method~(NM) with an iteration complexity O(κ1.5), which matches its known lower bound. In addition, for time-varying systems, we prove that the gradient method with optimal step size achieves the fastest provable worst-case convergence rate with quadratic Lyapunov functions. Finally, we further extend our analysis to stochastic games and study the impact of multiplicative noise on different algorithms. We show that it is impossible for an algorithm with one step of memory to achieve acceleration if it only queries the gradient once per batch (in contrast with the stochastic strongly-convex optimization setting, where such acceleration has been demonstrated). However, we exhibit an algorithm which achieves acceleration with two gradient queries per batch. 
    more » « less
  3. In this work, we revisit the generalization error of stochastic mirror descent for quadratically bounded losses studied in Telgarsky (2022). Quadratically bounded losses is a broad class of loss functions, capturing both Lipschitz and smooth functions, for both regression and classification problems. We study the high probability generalization for this class of losses on linear predictors in both realizable and non-realizable cases when the data are sampled IID or from a Markov chain. The prior work relies on an intricate coupling argument between the iterates of the original problem and those projected onto a bounded domain. This approach enables blackbox application of concentration inequalities, but also leads to suboptimal guarantees due in part to the use of a union bound across all iterations. In this work, we depart significantly from the prior work of Telgarsky (2022), and introduce a novel approach for establishing high probability generalization guarantees. In contrast to the prior work, our work directly analyzes the moment generating function of a novel supermartingale sequence and leverages the structure of stochastic mirror descent. As a result, we obtain improved bounds in all aforementioned settings. Specifically, in the realizable case and non-realizable case with light-tailed sub-Gaussian data, we improve the bounds by a $\log T$ factor, matching the correct rates of $1/T$ and $1/\sqrt{T}$, respectively. In the more challenging case of heavy-tailed polynomial data, we improve the existing bound by a $\mathrm{poly}\ T$ factor. 
    more » « less
  4. In this work, we revisit the generalization error of stochastic mirror descent for quadratically bounded losses studied in Telgarsky (2022). Quadratically bounded losses is a broad class of loss functions, capturing both Lipschitz and smooth functions, for both regression and classification problems. We study the high probability generalization for this class of losses on linear predictors in both realizable and non-realizable cases when the data are sampled IID or from a Markov chain. The prior work relies on an intricate coupling argument between the iterates of the original problem and those projected onto a bounded domain. This approach enables blackbox application of concentration inequalities, but also leads to suboptimal guarantees due in part to the use of a union bound across all iterations. In this work, we depart significantly from the prior work of Telgarsky (2022), and introduce a novel approach for establishing high probability generalization guarantees. In contrast to the prior work, our work directly analyzes the moment generating function of a novel supermartingale sequence and leverages the structure of stochastic mirror descent. As a result, we obtain improved bounds in all aforementioned settings. Specifically, in the realizable case and non-realizable case with light-tailed sub-Gaussian data, we improve the bounds by a $\log T$ factor, matching the correct rates of $1/T$ and $1/\sqrt{T}$, respectively. In the more challenging case of heavy-tailed polynomial data, we improve the existing bound by a $\mathrm{poly}\ T$ factor. 
    more » « less
  5. In this paper, we study the stability and its trade-off with optimization error for stochastic gradient descent (SGD) algorithms in the pairwise learning setting. Pairwise learning refers to a learning task which involves a loss function depending on pairs of instances among which notable examples are bipartite ranking, metric learning, area under ROC curve (AUC) maximization and minimum error entropy (MEE) principle. Our contribution is twofolded. Firstly, we establish the stability results for SGD for pairwise learning in the convex, strongly convex and non-convex settings, from which generalization errors can be naturally derived. Secondly, we establish the trade-off between stability and optimization error of SGD algorithms for pairwise learning. This is achieved by lower-bounding the sum of stability and optimization error by the minimax statistical error over a prescribed class of pairwise loss functions. From this fundamental trade-off, we obtain lower bounds for the optimization error of SGD algorithms and the excess expected risk over a class of pairwise losses. In addition, we illustrate our stability results by giving some specific examples of AUC maximization, metric learning and MEE. 
    more » « less