skip to main content


Title: MaterialsAtlas.org: a materials informatics web app platform for materials discovery and survey of state-of-the-art
Abstract

The availability and easy access of large-scale experimental and computational materials data have enabled the emergence of accelerated development of algorithms and models for materials property prediction, structure prediction, and generative design of materials. However, the lack of user-friendly materials informatics web servers has severely constrained the wide adoption of such tools in the daily practice of materials screening, tinkering, and design space exploration by materials scientists. Herein we first survey current materials informatics web apps and then propose and develop MaterialsAtlas.org, a web-based materials informatics toolbox for materials discovery, which includes a variety of routinely needed tools for exploratory materials discovery, including material’s composition and structure validity check (e.g. charge neutrality, electronegativity balance, dynamic stability, Pauling rules), materials property prediction (e.g. band gap, elastic moduli, hardness, and thermal conductivity), search for hypothetical materials, and utility tools. These user-friendly tools can be freely accessed athttp://www.materialsatlas.org. We argue that such materials informatics apps should be widely developed by the community to speed up materials discovery processes.

 
more » « less
Award ID(s):
1940099 1905775
NSF-PAR ID:
10366330
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
8
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Accelerating the design and development of new advanced materials is one of the priorities in modern materials science. These efforts are critically dependent on the development of comprehensive materials cyberinfrastructures which enable efficient data storage, management, sharing, and collaboration as well as integration of computational tools that help establish processing–structure–property relationships. In this contribution, we present implementation of such computational tools into a cloud-based platform called BisQue (Kvilekval et al., Bioinformatics 26(4):554, 2010). We first describe the current state of BisQue as an open-source platform for multidisciplinary research in the cloud and its potential for 3D materials science. We then demonstrate how new computational tools, primarily aimed at processing–structure–property relationships, can be implemented into the system. Specifically, in this work, we develop a module for BisQue that enables microstructure-sensitive predictions of effective yield strength of two-phase materials. Towards this end, we present an implementation of a computationally efficient data-driven model into the BisQue platform. The new module is made available online (web address:https://bisque.ece.ucsb.edu/module_service/Composite_Strength/) and can be used from a web browser without any special software and with minimal computational requirements on the user end. The capabilities of the module for rapid property screening are demonstrated in case studies with two different methodologies based on datasets containing 3D microstructure information from (i) synthetic generation and (ii) sampling large 3D volumes obtained in experiments.

     
    more » « less
  2. Abstract

    Biological organisms are increasingly being introduced and eradicated in an effort to maintain biodiversity and ecosystem function in the face of anthropogenic threats. However, these conservation actions can have unintended consequences to non‐target species. Careful vetting of these actions using ecological modelling tools could help predict and avoid unintended consequences.

    Qualitative modelling tools, such as fuzzy interaction webs (FIWs), allow for qualitative rankings of community properties (e.g. interaction strength = high, medium, low) in combination with quantitative information to predict management outcomes. These tools have lower data requirements than strictly quantitative models, facilitating their use for communities lacking comprehensive parameterization. However, no studies have evaluated the efficacy of FIWs for predicting unintended consequences against empirically documented outcomes. Moreover, there is no process for systematically identifying which species to incorporate in community‐level conservation assessments to overcome model structure uncertainty. Finally, there is a need to make qualitative modelling tools more accessible for conservation practitioners.

    We applied FIWs to the case study of lake trout introduction into Yellowstone Lake, Yellowstone National Park, to assess its ability to predict documented community‐level outcomes from an intentional species introduction. Next, we used the case study of the intentional red squirrel introduction to Newfoundland to show how a community assessment framework can help define the community interaction web needed for applying a FIW. Lastly, we introduced a user‐friendly web interface (https://matrix.mpgranch.com/#/) for applying FIWs to conservation questions.

    We found that the FIW predicted previously documented directional changes in the abundance of community components relatively well in the Yellowstone Lake case study, even with minimal knowledge of the system. The community assessment framework provided a formal process for identifying community components for the Newfoundland case study, and the resulting FIW predicted documented unintended consequences. The user interface predicts realistic outcomes in our study system and allows managers to build and apply FIWs for conservation planning.

    Synthesis and applications. Our community assessment framework and user interface can be used to apply FIWs to identify and avert potential unintended outcomes of species introductions and eradications for improved conservation management.

     
    more » « less
  3. Abstract

    High‐throughput screening has become one of the major strategies for the discovery of novel functional materials. However, its effectiveness is severely limited by the lack of sufficient and diverse materials in current materials repositories such as the open quantum materials database (OQMD). Recent progress in deep learning have enabled generative strategies that learn implicit chemical rules for creating hypothetical materials with new compositions and structures. However, current materials generative models have difficulty in generating structurally diverse, chemically valid, and stable materials. Here we propose CubicGAN, a generative adversarial network (GAN) based deep neural network model for large scale generative design of novel cubic materials. When trained on 375 749 ternary materials from the OQMD database, the authors show that the model is able to not only rediscover most of the currently known cubic materials but also generate hypothetical materials of new structure prototypes. A total of 506 such materials have been verified by phonon dispersion calculation. Considering the importance of cubic materials in wide applications such as solar panels, the GAN model provides a promising approach to significantly expand existing materials repositories, enabling the discovery of new functional materials via screening. The new crystal structures discovered are freely accessible atwww.carolinamatdb.org.

     
    more » « less
  4. Abstract

    Analyses of publicly available structural data reveal interesting insights into the impact of the three‐dimensional (3D) structures of protein targets important for discovery of new drugs (e.g., G‐protein‐coupled receptors, voltage‐gated ion channels, ligand‐gated ion channels, transporters, and E3 ubiquitin ligases). The Protein Data Bank (PDB) archive currently holds > 155,000 atomic‐level 3D structures of biomolecules experimentally determined using crystallography, nuclear magnetic resonance spectroscopy, and electron microscopy. The PDB was established in 1971 as the first open‐access, digital‐data resource in biology, and is now managed by the Worldwide PDB partnership (wwPDB;wwPDB.org). US PDB operations are the responsibility of the Research Collaboratory for Structural Bioinformatics PDB (RCSB PDB). The RCSB PDB serves millions ofRCSB.orgusers worldwide by delivering PDB data integrated with ∼40 external biodata resources, providing rich structural views of fundamental biology, biomedicine, and energy sciences. Recently published work showed that the PDB archival holdings facilitated discovery of ∼90% of the 210 new drugs approved by the US Food and Drug Administration 2010–2016. We review user‐driven development of RCSB PDB services, examine growth of the PDB archive in terms of size and complexity, and present examples and opportunities for structure‐guided drug discovery for challenging targets (e.g., integral membrane proteins).

     
    more » « less
  5. The regression model‐based tool is developed for predicting the Seebeck coefficient of crystalline materials in the temperature range from 300 K to 1000 K. The tool accounts for the single crystal versus polycrystalline nature of the compound, the production method, and properties of the constituent elements in the chemical formula. We introduce new descriptive features of crystalline materials relevant for the prediction the Seebeck coefficient. To address off‐stoichiometry in materials, the predictive tool is trained on a mix of stoichiometric and nonstoichiometric materials. The tool is implemented into a web application (http://info.eecs.northwestern.edu/SeebeckCoefficientPredictor) to assist field scientists in the discovery of novel thermoelectric materials. © 2017 Wiley Periodicals, Inc.

     
    more » « less