Abstract Accelerating the design and development of new advanced materials is one of the priorities in modern materials science. These efforts are critically dependent on the development of comprehensive materials cyberinfrastructures which enable efficient data storage, management, sharing, and collaboration as well as integration of computational tools that help establish processing–structure–property relationships. In this contribution, we present implementation of such computational tools into a cloud-based platform called BisQue (Kvilekval et al., Bioinformatics 26(4):554, 2010). We first describe the current state of BisQue as an open-source platform for multidisciplinary research in the cloud and its potential for 3D materials science. We then demonstrate how new computational tools, primarily aimed at processing–structure–property relationships, can be implemented into the system. Specifically, in this work, we develop a module for BisQue that enables microstructure-sensitive predictions of effective yield strength of two-phase materials. Towards this end, we present an implementation of a computationally efficient data-driven model into the BisQue platform. The new module is made available online (web address:https://bisque.ece.ucsb.edu/module_service/Composite_Strength/) and can be used from a web browser without any special software and with minimal computational requirements on the user end. The capabilities of the module for rapid property screening are demonstrated in case studies with two different methodologies based on datasets containing 3D microstructure information from (i) synthetic generation and (ii) sampling large 3D volumes obtained in experiments.
more »
« less
MaterialsAtlas.org: a materials informatics web app platform for materials discovery and survey of state-of-the-art
Abstract The availability and easy access of large-scale experimental and computational materials data have enabled the emergence of accelerated development of algorithms and models for materials property prediction, structure prediction, and generative design of materials. However, the lack of user-friendly materials informatics web servers has severely constrained the wide adoption of such tools in the daily practice of materials screening, tinkering, and design space exploration by materials scientists. Herein we first survey current materials informatics web apps and then propose and develop MaterialsAtlas.org, a web-based materials informatics toolbox for materials discovery, which includes a variety of routinely needed tools for exploratory materials discovery, including material’s composition and structure validity check (e.g. charge neutrality, electronegativity balance, dynamic stability, Pauling rules), materials property prediction (e.g. band gap, elastic moduli, hardness, and thermal conductivity), search for hypothetical materials, and utility tools. These user-friendly tools can be freely accessed athttp://www.materialsatlas.org. We argue that such materials informatics apps should be widely developed by the community to speed up materials discovery processes.
more »
« less
- PAR ID:
- 10366330
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Computational Materials
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2057-3960
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract High‐throughput screening has become one of the major strategies for the discovery of novel functional materials. However, its effectiveness is severely limited by the lack of sufficient and diverse materials in current materials repositories such as the open quantum materials database (OQMD). Recent progress in deep learning have enabled generative strategies that learn implicit chemical rules for creating hypothetical materials with new compositions and structures. However, current materials generative models have difficulty in generating structurally diverse, chemically valid, and stable materials. Here we propose CubicGAN, a generative adversarial network (GAN) based deep neural network model for large scale generative design of novel cubic materials. When trained on 375 749 ternary materials from the OQMD database, the authors show that the model is able to not only rediscover most of the currently known cubic materials but also generate hypothetical materials of new structure prototypes. A total of 506 such materials have been verified by phonon dispersion calculation. Considering the importance of cubic materials in wide applications such as solar panels, the GAN model provides a promising approach to significantly expand existing materials repositories, enabling the discovery of new functional materials via screening. The new crystal structures discovered are freely accessible atwww.carolinamatdb.org.more » « less
-
Abstract Self‐supervised neural language models have recently achieved unprecedented success from natural language processing to learning the languages of biological sequences and organic molecules. These models have demonstrated superior performance in the generation, structure classification, and functional predictions for proteins and molecules with learned representations. However, most of the masking‐based pre‐trained language models are not designed for generative design, and their black‐box nature makes it difficult to interpret their design logic. Here a Blank‐filling Language Model for Materials (BLMM) Crystal Transformer is proposed, a neural network‐based probabilistic generative model for generative and tinkering design of inorganic materials. The model is built on the blank‐filling language model for text generation and has demonstrated unique advantages in learning the “materials grammars” together with high‐quality generation, interpretability, and data efficiency. It can generate chemically valid materials compositions with as high as 89.7% charge neutrality and 84.8% balanced electronegativity, which are more than four and eight times higher compared to a pseudo‐random sampling baseline. The probabilistic generation process of BLMM allows it to recommend materials tinkering operations based on learned materials chemistry, which makes it useful for materials doping. The model is applied to discover a set of new materials as validated using the Density Functional Theory (DFT) calculations. This work thus brings the unsupervised transformer language models based generative artificial intelligence to inorganic materials. A user‐friendly web app for tinkering materials design has been developed and can be accessed freely atwww.materialsatlas.org/blmtinker.more » « less
-
Abstract Analyses of publicly available structural data reveal interesting insights into the impact of the three‐dimensional (3D) structures of protein targets important for discovery of new drugs (e.g., G‐protein‐coupled receptors, voltage‐gated ion channels, ligand‐gated ion channels, transporters, and E3 ubiquitin ligases). The Protein Data Bank (PDB) archive currently holds > 155,000 atomic‐level 3D structures of biomolecules experimentally determined using crystallography, nuclear magnetic resonance spectroscopy, and electron microscopy. The PDB was established in 1971 as the first open‐access, digital‐data resource in biology, and is now managed by the Worldwide PDB partnership (wwPDB;wwPDB.org). US PDB operations are the responsibility of the Research Collaboratory for Structural Bioinformatics PDB (RCSB PDB). The RCSB PDB serves millions ofRCSB.orgusers worldwide by delivering PDB data integrated with ∼40 external biodata resources, providing rich structural views of fundamental biology, biomedicine, and energy sciences. Recently published work showed that the PDB archival holdings facilitated discovery of ∼90% of the 210 new drugs approved by the US Food and Drug Administration 2010–2016. We review user‐driven development of RCSB PDB services, examine growth of the PDB archive in terms of size and complexity, and present examples and opportunities for structure‐guided drug discovery for challenging targets (e.g., integral membrane proteins).more » « less
-
Abstract The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), funded by the US National Science Foundation, National Institutes of Health, and Department of Energy, has served structural biologists and Protein Data Bank (PDB) data consumers worldwide since 1999. RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partnership, is the US data center for the global PDB archive housing biomolecular structure data. RCSB PDB is also responsible for the security of PDB data, as the wwPDB‐designated Archive Keeper. Annually, RCSB PDB serves tens of thousands of three‐dimensional (3D) macromolecular structure data depositors (using macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro‐electron diffraction) from all inhabited continents. RCSB PDB makes PDB data available from its research‐focusedRCSB.orgweb portal at no charge and without usage restrictions to millions of PDB data consumers working in every nation and territory worldwide. In addition, RCSB PDB operates an outreach and educationPDB101.RCSB.orgweb portal that was used by more than 800,000 educators, students, and members of the public during calendar year 2020. This invited Tools Issue contribution describes (i) how the archive is growing and evolving as new experimental methods generate ever larger and more complex biomolecular structures; (ii) the importance of data standards and data remediation in effective management of the archive and facile integration with more than 50 external data resources; and (iii) new tools and features for 3D structure analysis and visualization made available during the past yearviatheRCSB.orgweb portal.more » « less
An official website of the United States government
