skip to main content


Title: Structure and Large‐Scale Organization of Extreme Cold Wave Events Over the Chinese Mainland During the Boreal Cold Season
Abstract

Recent changes in the Earth's climate have led to renewed interest in extreme cold wave (ECW) events. This study identifies the ECW patterns over the Chinese mainland, their corresponding large‐scale meteorological patterns (LMPs) and their favorable planetary wave patterns over 1961–2015. A self‐organizing map classifies ECWs into northeast, nationwide, northwest–south and Qinghai–Tibetan Plateau clusters. The cold anomalies are primarily contributed by the anomalous wind advecting climatological mean temperature for the leading three clusters, but diabaitic heating for the Qinghai–Tibetan Plateau cluster. The associated LMPs are primarily characterized by a dipole with a positive height anomaly over Siberia and a negative height anomaly extending from Japan to the Iranian Plateau, which displaces southwestward among the four ECW clusters. The LMPs induce anomalous northerly flows extending from the upper troposphere to the near‐surface, which deepen the negative height anomaly southwestward from the East Asian trough and accumulate cold air masses over the key regions within the dipole that are phase‐locked with the LMPs (i.e., baroclinic growth). Such baroclinic growth of the LMP is larger during periods of a planetary wave (wavenumbers 1–5) resembling the Northern Annular Mode (NAM). Meanwhile, the negative (positive) phase of the NAM provides more direct contribution to the LMP of the northeast and nationwide (Qinghai‐Tibetan Plateau) ECW clusters and thus are likely to favor the occurrence of ECWs. The negative phase of NAM‐like planetary waves exhibit a positive trend after the transition year of 1987, and could potentially increase the occurrence frequency of nationwide ECWs.

 
more » « less
NSF-PAR ID:
10366397
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
126
Issue:
22
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A significant negative correlation between the seasonal mean temperature anomaly and the intensity of the intraseasonal temperature oscillation in the northern winter over Northeast China is found during the time period 1959–2011. A stronger intraseasonal oscillation (ISO) is found during an extremely cold winter. The cold winter in Northeast China is a part of zonally oriented large‐scale pattern with a negative (positive) temperature anomaly in mid‐ (high) latitudes and is associated with a negative phase of the North Atlantic Oscillation (NAO). The intraseasonal temperature anomaly originates from high‐latitude Central Eurasia and propagates southeastward. The southeastward propagation is attributed to the upper tropospheric dispersion of Rossby wave energy as a result of coupling of the low‐level temperature and the upper‐level geopotential height. The cause of the negative correlation between the intraseasonal and interannual modes is investigated. A cold winter in Northeast China is associated with a weakened meridional temperature gradient and vertical wind shear north of 50°N. This weakens synoptic variability in situ through baroclinic instability. Because the ISO competes for an energy source with the synoptic motion, the ISO is enhanced north of 50°N. The southeastward propagation of the enhanced ISO mode increased intraseasonal temperature variability over Northeast China. As a result, a cold winter in Northeast China is accompanied by an enhanced ISO variability in situ. The enhanced local ISO could further feedback to the winter mean temperature anomaly through nonlinear advective processes. The diagnosis of the temperature budget indicates that the ISO may interact with motion on other scales to contribute to the winter mean temperature anomaly in situ.

     
    more » « less
  2. A climatology of the 100- and 250-hPa 45°–75°N zonal-mean meridional eddy heat flux anomaly, hereafter heat flux anomaly, was created to examine its variability following cool-season (i.e., October–April) blocks and extratropical cyclones. The goal is to elucidate the dynamical and environmental differences between synoptic events followed by the most extreme heat flux anomalies. The analysis was conducted with the National Aeronautics and Space Administration’s Modern-Era Retrospective Analysis for Research and Applications, version 2 reanalysis. The results show that, on average, European blocks and west Pacific cyclones are followed by positive heat flux anomalies while west Pacific blocks and Atlantic extratropical cyclones are followed by negative heat flux anomalies. However, there was a large range of the 11-day-average heat flux anomaly following the events. Events in each region were further partitioned by their 100-hPa heat flux anomaly for a temporal and spatial analysis of the top and bottom quartile of events. Top-quartile events exhibited a baroclinic wave structure with height from the troposphere through the stratosphere, whereas bottom-quartile events were associated with a barotropic wave structure with height; these structures are significant at the 5% level. The results suggest that the sign of the heat flux anomaly is not dependent on the location of the synoptic event alone, but that there are common climatological and anomalous wave patterns surrounding the synoptic events that result in positive or negative heat flux anomaly. Regardless of event region, the precursor stratospheric structure is a key indicator in whether an event is followed by positive or negative 100-hPa heat flux anomalies.

     
    more » « less
  3. null (Ed.)
    Abstract Winter surface air temperature (SAT) over North America exhibits pronounced variability on subseasonal, interannual, decadal, and interdecadal time scales. Here, reanalysis data from 1950–2017 are analyzed to investigate the atmospheric and surface ocean conditions associated with its subseasonal to interannual variability. Detrended daily SAT data reveal a known warm west/cold east (WWCE) dipole over midlatitude North America and a cold north/warm south (CNWS) dipole over eastern North America. It is found that while the North Pacific blocking (PB) is important for the WWCE and CNWS dipoles, they also depend on the phase of the North Atlantic Oscillation (NAO). When a negative-phase NAO (NAO − ) coincides with PB, the WWCE dipole is enhanced (compared with the PB alone case) and it also leads to a warm north/cold south dipole anomaly in eastern North America; but when PB occurs with a positive-phase NAO (NAO + ), the WWCE dipole weakens and the CNWS dipole is enhanced. The PB events concurrent with the NAO − (NAO + ) and SAT WWCE (CNWS) dipole are favored by the Pacific El Niño–like (La Niña–like) sea surface temperature mode and the positive (negative) North Pacific mode. The PB-NAO + has a larger component projecting onto the SAT WWCE dipole during the La Niña winter than during the El Niño winter because a more zonal wave train is formed. Strong North American SAT WWCE dipoles and enhanced projections of PB-NAO + events onto the SAT WWCE dipole component are also readily seen for the positive North Pacific mode. The North Pacific mode seems to play a bigger role in the North American SAT variability than ENSO. 
    more » « less
  4. Abstract South American climate is influenced by both Atlantic multidecadal variability (AMV) and Pacific multidecadal variability (PMV). But how they jointly affect South American precipitation and surface air temperature is not well understood. Here we analyze composite anomalies to quantify their combined impacts using observations and reanalysis data. During an AMV warm (cold) phase, PMV-induced JJA precipitation anomalies are more positive (negative) over 0°-10°S and southeastern South America, but more negative (positive) over the northern Amazon and central Brazil. PMV-induced precipitation anomalies in DJF are more positive (negative) over Northeast Brazil and southeastern South America during the warm (cold) AMV phase, but more negative (positive) over the central Amazon Basin and central-eastern Brazil. PMV’s impact on AMV-induced precipitation anomalies shows similar dipole patterns. The precipitation changes result from perturbations of the local Hadley and Walker Circulations. In JJA, PMV- and AMV-induced temperature anomalies are more positive (negative) over entire South America when the other basin is in a warm (cold) phase, but in DJF temperature anomalies are more positive (negative) only over the central Andes and central-eastern Brazil and more negative (positive) over southeastern South America and Patagonia. Over central Brazil in JJA and southern Bolivia and northern Argentina in DJF, the temperature and precipitation anomalies are negatively correlated. Our results show that the influence of Pacific and Atlantic multidecadal variability need to be considered jointly, as significant departures from the mean AMV or PMV fingerprint can occur during a cold or warm phase of the other basin’s mode. 
    more » « less
  5. Abstract

    By analysing a 113–year (1900–2012) observational dataset, it is shown that the interdecadal fluctuation of the summer precipitation over Northeast Asia differs from that in central East Asia during the 20th century, and has experienced three interdecadal shifts in the 1920s, mid‐1960s and late 1990s. That fluctuation coincides well with the multidecadal fluctuation of the sea surface temperature in the North Atlantic, known as the Atlantic Multidecadal Oscillation (AMO). The AMO affects Northeast Asia via a circumglobal teleconnection pattern extending from the North Atlantic to North America. Corresponding with the positive phase of this teleconnection pattern, a tripolar pattern emerges in the Asian–North Pacific sector, with anomalous low pressure over Northeast Asia and high pressure over Lake Baikal and the mid‐latitude western North Pacific. These results suggest that the positive phase of the AMO favours the occurrence of cold vortex over Northeast Asia and anomalous highs over Lake Baikal and the mid‐latitude western North Pacific in summer, which enhances the East Asian summer monsoon and southward intrusion of high‐latitude cold air, and eventually increases the summer precipitation in Northeast Asia. Furthermore, initialized decadal prediction simulations using the CCSM4 model reproduce well the observed variations of the AMO and its associated atmospheric teleconnection but with slightly shifted geographic locations. The simulated anomalous Northeast Asia cold vortex and strong East Asian summer monsoon, lead to above‐normal summer precipitation over Northeast Asia. The modelling results confirm that the multidecadal variability in the North Atlantic can cause the observed interdecadal variations of Northeast Asia summer precipitation. Our results suggest that to understand and predict interdecadal climate change over Northeast Asia, it is important to consider the key role of the AMO.

     
    more » « less