skip to main content

Title: Molecular assays of pollen use consistently reflect pollinator visitation patterns in a system of flowering plants

Determining how pollinators visit plants vs. how they carry and transfer pollen is an ongoing project in pollination ecology. The current tools for identifying the pollens that bees carry have different strengths and weaknesses when used for ecological inference. In this study we use three methods to better understand a system of congeneric, coflowering plants in the genusClarkiaand their bee pollinators: observations of plant–pollinator contact in the field, and two different molecular methods to estimate the relative abundance of eachClarkiapollen in samples collected from pollinators. We use these methods to investigate if observations of plant–pollinator contact in the field correspond to the pollen bees carry; if individual bees carryClarkiapollens in predictable ways, based on previous knowledge of their foraging behaviors; and how the three approaches differ for understanding plant–pollinator interactions. We find that observations of plant–pollinator contact are generally predictive of the pollens that bees carry while foraging, and network topologies using the three different methods are statistically indistinguishable from each other. Results from molecular pollen analysis also show that while bees can carry multiple species ofClarkiaat the same time, they often carry one species of pollen. Our work contributes to the growing body of literature aimed at resolving how pollinators use floral resources. We suggest our novel relative amplicon quantification method as another tool in the developing molecular ecology and pollination biology toolbox.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Molecular Ecology Resources
Page Range / eLocation ID:
p. 361-374
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pollinator nutritional ecology provides insights into plant–pollinator interactions, coevolution, and the restoration of declining pollinator populations. Bees obtain their protein and lipid nutrient intake from pollen, which is essential for larval growth and development as well as adult health and reproduction. Our previous research revealed that pollen protein to lipid ratios (P:L) shape bumble bee foraging preferences among pollen host-plant species, and these preferred ratios link to bumble bee colony health and fitness. Yet, we are still in the early stages of integrating data on P:L ratios across plant and bee species. Here, using a standard laboratory protocol, we present over 80 plant species’ protein and lipid concentrations and P:L values, and we evaluate the P:L ratios of pollen collected by three bee species. We discuss the general phylogenetic, phenotypic, behavioral, and ecological trends observed in these P:L ratios that may drive plant–pollinator interactions; we also present future research questions to further strengthen the field of pollination nutritional ecology. This dataset provides a foundation for researchers studying the nutritional drivers of plant–pollinator interactions as well as for stakeholders developing planting schemes to best support pollinators. 
    more » « less
  2. Abstract

    Despite the importance of insect pollination to produce marketable fruits, insect pollination management is limited by insufficient knowledge about key crop pollinator species. This lack of knowledge is due in part to (1) the extensive labour involved in collecting direct observations of pollen transport, (2) the variability of insect assemblages over space and time and (3) the possibility that pollinators may need access to wild plants as well as crop floral resources.

    We address these problems using strawberry in the United Kingdom as a case study. First, we compare two proxies for estimating pollinator importance: flower visits and pollen transport. Pollen‐transport data might provide a closer approximation of pollination service, but visitation data are less time‐consuming to collect. Second, we identify insectparametersthat are associated with high importance as pollinators, estimated using each of the proxies above. Third, we estimated insects' use of wild plants as well as the strawberry crop.

    Overall, pollinator importances estimated based on easier‐to‐collect visitation data were strongly correlated with importances estimated based on pollen loads. Both frameworks suggest that bees (ApisandBombus) and hoverflies (Eristalis) are likely to be key pollinators of strawberries, although visitation data underestimate the importance of bees.

    Moving beyond species identities, abundant, relatively specialised insects with long active periods are likely to provide more pollination services.

    Most insects visiting strawberry plants also carried pollen from wild plants, suggesting that pollinators need diverse floral resources.

    Identifying essential pollinators or pollinator parameters based on visitation data will reach the same general conclusions as those using pollen transport data, at least in monoculture crop systems. Managers may be able to enhance pollination service by preserving habitats surrounding crop fields to complement pollinators' diets and provide habitats for diverse life stages of wild pollinators.

    more » « less
  3. Abstract

    Mutualistic relationships, such as those between plants and pollinators, may be vulnerable to the local extinctions predicted under global environmental change. However, network theory predicts that plant–pollinator networks can withstand species loss if pollinators switch to alternative floral resources (rewiring). Whether rewiring occurs following species loss in natural communities is poorly known because replicated species exclusions are difficult to implement at appropriate spatial scales.

    We experimentally removed a hummingbird‐pollinated plant,Heliconia tortuosa, from within tropical forest fragments to investigate how hummingbirds respond to temporary loss of an abundant resource. Under therewiring hypothesis, we expected that behavioural flexibility would allow hummingbirds to use alternative resources, leading to decreased ecological specialization and reorganization of the network structure (i.e. pairwise interactions). Alternatively, morphological or behavioural constraints—such as trait‐matching or interspecific competition—might limit the extent to which hummingbirds alter their foraging behaviour.

    We employed a replicated Before‐After‐Control‐Impact experimental design and quantified plant–hummingbird interactions using two parallel sampling methods: pollen collected from individual hummingbirds (‘pollen networks’, created from >300 pollen samples) and observations of hummingbirds visiting focal plants (‘camera networks’, created from >19,000 observation hours). To assess the extent of rewiring, we quantified ecological specialization at the individual, species and network levels and examined interaction turnover (i.e. gain/loss of pairwise interactions).

    H. tortuosaremoval caused some reorganization of pairwise interactions but did not prompt large changes in specialization, despite the large magnitude of our manipulation (on average, >100 inflorescences removed in exclusion areas of >1 ha). Although some individual hummingbirds sampled through time showed modest increases in niche breadth followingHeliconiaremoval (relative to birds that did not experience resource loss), these changes were not reflected in species‐ and network‐level specialization metrics.

    Our results suggest that, at least over short time‐scales, animals may not necessarily shift to alternative resources after losing an abundant food resource—even in species thought to be highly opportunistic foragers, such as hummingbirds. Given that rewiring contributes to theoretical predictions of network stability, future studies should investigate why pollinators might not expand their diets after a local resource extinction.

    more » « less
  4. Abstract

    Introduced species can have cascading effects on ecological communities, but indirect effects of species introductions are rarely the focus of ecological studies. For example, managed honey bees (Apis mellifera) have been widely introduced outside their native range and are increasingly dominant floral visitors. Multiple studies have documented how honey bees impact native bee communities through floral resource competition, but few have quantified how these competitive interactions indirectly affect pollination and plant reproduction. Such indirect effects are hard to detect because honey bees are themselves pollinators and may directly impact pollination through their own floral visits. The potentially huge but poorly understood impacts that non‐native honey bees have on native plant populations combined with increased pressure from beekeepers to place hives in U.S. National Parks and Forests makes exploring impacts of honey bee introductions on native plant pollination of pressing concern. In this study, we used experimental hive additions, field observations, as well as single‐visit and multiple‐visit pollination effectiveness trials across multiple years to untangle the direct and indirect impacts of increasing honey bee abundance on the pollination of an ecologically important wildflower,Camassia quamash. We found compelling evidence that honey bee introductions indirectly decrease pollination by reducing nectar and pollen availability and competitively excluding visits from more effective native bees. In contrast, the direct impact of honey bee visits on pollination was negligible, and, if anything, negative. Honey bees were ineffective pollinators, and increasing visit quantity could not compensate for inferior visit quality. Indeed, although the effect was not statistically significant, increased honey bee visits had a marginally negative impact on seed production. Thus, honey bee introductions may erode longstanding plant‐pollinator mutualisms, with negative consequences for plant reproduction. Our study calls for a more thorough understanding of the indirect effects of species introductions and more careful coordination of hive placements.

    more » « less
  5. Abstract

    About 70% of the world's main crops depend on insect pollination. Climate change is already affecting the abundance and distribution of insects, which could cause geographical mismatches between crops and their pollinators. Crops that rely primarily on wild pollinators (e.g., crops that cannot be effectively pollinated by commercial colonies of honey bees) could be particularly in jeopardy. However, limited information on plant–pollinator associations and pollinator distributions complicate the assessment of climate change impacts on specific crops. To study the potential impacts of climate change on pollination of a specific crop in North America, we use the case of open‐field tomato crops, which rely on buzz pollinators (species that use vibration to release pollen, such as bumble bees) to increase their production. We aimed to (1) assess potential changes in buzz pollinator distribution and richness, and (2) evaluate the overlap between areas with high densities of tomato crops and high potential decrease in richness. We used baseline (1961–1990) climate and future (2050s and 2080s) climatic projections in ecological niche models fitted with occurrences of wild bees, documented in the literature as pollinators of tomatoes, to estimate the baseline and future potential distribution of suitable climatic conditions of targeted species and to create maps of richness change across North America. We obtained reliable models for 15 species and found important potential decreases in the distribution of some pollinators (e.g.,Lasioglossum pectoraleandAugochlorella aurata). We observed geographical discrepancies in the projected change in species richness across North America, detecting important declines in the eastern United States (up to 11 species decrease for 2050s). After overlapping the maps of species richness change with a tomato crop map for the United States, we found spatial correspondence between richness declines and areas with high concentration of tomato crops. Disparities in the effects of climate change on the potential future distribution of different wild pollinators and geographical variation in richness highlight the importance of crop‐specific studies. Our study also emphasizes the challenges of compiling and modeling crop‐specific pollinator data and the need to improve our understanding of current distribution of pollinators and their community dynamics under climate change.

    more » « less