skip to main content


Title: Sea Ice Suppression of CO 2 Outgassing in the West Antarctic Peninsula: Implications For The Evolving Southern Ocean Carbon Sink
Abstract

The Southern Ocean plays an important role in the uptake of atmospheric CO2. In seasonally ice‐covered regions, estimates of air‐sea exchange remain uncertain in part because of a lack of observations outside the summer season. Here we present new estimates of air‐sea CO2flux in the West Antarctic Peninsula (WAP) from an autonomous mooring on the continental shelf. In summer, the WAP is a sink for atmospheric CO2followed by a slow return to atmospheric equilibrium in autumn and winter. Outgassing is almost entirely suppressed by ice cover from June through October, resulting in a modest net annual CO2sink. Model projections indicate sea ice formation will occur later in the season in the coming decades potentially weakening the net oceanic CO2sink. Interannual variability in the WAP is significant, highlighting the importance of sustained observations of air‐sea exchange in this rapidly changing region of the Southern Ocean.

 
more » « less
NSF-PAR ID:
10366482
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
11
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Chukchi Sea is an increasing CO2sink driven by rapid climate changes. Understanding the seasonal variation of air‐sea CO2exchange and the underlying mechanisms of biogeochemical dynamics is important for predicting impacts of climate change on and feedbacks by the ocean. Here, we present a unique data set of underway sea surface partial pressure of CO2(pCO2) and discrete samples of biogeochemical properties collected in five consecutive cruises in 2014 and examine the seasonal variations in air‐sea CO2flux and net community production (NCP). We found that thermal and non‐thermal effects have different impacts on sea surfacepCO2and thus the air‐sea CO2flux in different water masses. The Bering summer water combined with meltwater has a significantly greater atmospheric CO2uptake potential than that of the Alaskan Coastal Water in the southern Chukchi Sea in summer, due to stronger biological CO2removal and a weaker thermal effect. By analyzing the seasonal drawdown of dissolved inorganic carbon (DIC) and nutrients, we found that DIC‐based NCP was higher than nitrate‐based NCP by 66%–84% and attributable to partially decoupled C and N uptake because of a variable phytoplankton stoichiometry. A box model with a non‐Redfield C:N uptake ratio can adequately reproduce observedpCO2and DIC, which reveals that, during the intensive growing season (late spring to early summer), 30%–46% CO2uptake in the Chukchi Sea was supported by a flexible stoichiometry of phytoplankton. These findings have important ramification for forecasting the responses of CO2uptake of the Chukchi ecosystem to climate change.

     
    more » « less
  2. Abstract

    The ocean coastal‐shelf‐slope ecosystem west of the Antarctic Peninsula (WAP) is a biologically productive region that could potentially act as a large sink of atmospheric carbon dioxide. The duration of the sea‐ice season in the WAP shows large interannual variability. However, quantifying the mechanisms by which sea ice impacts biological productivity and surface dissolved inorganic carbon (DIC) remains a challenge due to the lack of data early in the phytoplankton growth season. In this study, we implemented a circulation, sea‐ice, and biogeochemistry model (MITgcm‐REcoM2) to study the effect of sea ice on phytoplankton blooms and surface DIC. Results were compared with satellite sea‐ice and ocean color, and research ship surveys from the Palmer Long‐Term Ecological Research (LTER) program. The simulations suggest that the annual sea‐ice cycle has an important role in the seasonal DIC drawdown. In years of early sea‐ice retreat, there is a longer growth season leading to larger seasonally integrated net primary production (NPP). Part of the biological uptake of DIC by phytoplankton, however, is counteracted by increased oceanic uptake of atmospheric CO2. Despite lower seasonal NPP, years of late sea‐ice retreat show larger DIC drawdown, attributed to lower air‐sea CO2fluxes and increased dilution by sea‐ice melt. The role of dissolved iron and iron limitation on WAP phytoplankton also remains a challenge due to the lack of data. The model results suggest sediments and glacial meltwater are the main sources in the coastal and shelf regions, with sediments being more influential in the northern coast.

     
    more » « less
  3. Abstract

    The Arctic Ocean has turned from a perennial ice‐covered ocean into a seasonally ice‐free ocean in recent decades. Such a shift in the air‐ice‐sea interface has resulted in substantial changes in the Arctic carbon cycle and related biogeochemical processes. To quantitatively evaluate how the oceanic CO2sink responds to rapid sea ice loss and to provide a mechanistic explanation, here we examined the air‐sea CO2flux and the regional CO2sink in the western Arctic Ocean from 1994 to 2019 by two complementary approaches: observation‐based estimation and a data‐driven box model evaluation. ThepCO2observations and model results showed that summer CO2uptake significantly increased by about 1.4 ± 0.6 Tg C decade−1in the Chukchi Sea, primarily due to a longer ice‐free period, a larger open area, and an increased primary production. However, no statistically significant increase in CO2sink was found in the Canada Basin and the Beaufort Sea based on both observations and modeled results. The reduced sea ice coverage in summer in the Canada Basin and the enhanced wind speed in the Beaufort Sea potentially promoted CO2uptake, which was, however, counteracted by a rapidly decreased air‐seapCO2gradient therein. Therefore, the current and future Arctic Ocean CO2uptake trends cannot be sufficiently reflected by the air‐seapCO2gradient alone because of the sea ice variations and other environmental factors.

     
    more » « less
  4. Abstract

    The carbonate chemistry in the Dalton Polynya in East Antarctica (115°–123°E) was investigated in summer 2014/2015 using high‐frequency underway measurements of CO2fugacity (fCO2) and discrete water column measurements of total dissolved inorganic carbon (TCO2) and total alkalinity. Air‐sea CO2fluxes indicate this region was a weak net source of CO2to the atmosphere (0.7 ± 0.9 mmol C m−2day−1) during the period of observation, with the largest degree of surface water supersaturation (ΔfCO2= +45 μatm) in ice‐covered waters near the Totten Ice Shelf (TIS) as compared to the ice‐free surface waters in the Dalton Polynya. The seasonal depletion of mixed‐layer TCO2(6 to 51 μmol/kg) in ice‐free regions was primarily driven by sea ice melt and biological CO2uptake. Estimates of net community production (NCP) reveal net autotrophy in the ice‐free Dalton Polynya (NCP = 5–20 mmol C m−2day−1) and weakly heterotrophic waters near the ice‐covered TIS (NCP = −4–0 mmol C m−2day−1). Satellite‐derived estimates of chlorophylla(Chla) and sea ice coverage suggest that the early summer season in 2014/2015 was anomalous relative to the long‐term (1997–2017) record, with lower surface Chlaconcentrations and a greater degree of sea ice cover during the period of observation; the implications for seasonal primary production and air‐sea CO2exchange are discussed. This study highlights the importance of both physical and biological processes in controlling air‐sea CO2fluxes and the significant interannual variability of the CO2system in Antarctic coastal regions.

     
    more » « less
  5. Abstract

    The Southern Ocean, an important region for the uptake of anthropogenic carbon dioxide (CO2), features strong surface currents due to substantial mesoscale meanders and eddies. These features interact with the wind and modify the momentum transfer from the atmosphere to the ocean. Although such interactions are known to reduce momentum transfer, their impact on air‐sea carbon exchange remains unclear. Using a 1/20° physical‐biogeochemical coupled ocean model, we examined the impact of the current‐wind interaction on the surface carbon concentration and the air‐sea carbon exchange in the Southern Ocean. The current‐wind interaction decreased winter partial pressure of CO2(pCO2) at the ocean surface mainly south of the northern subantarctic front. It also reducedpCO2in summer, indicating enhanced uptake, but not to the same extent as the winter loss. Consequently, the net outgassing of CO2was found to be reduced by approximately 17%when including current‐wind interaction. These changes stem from the combined effect of vertical mixing and Ekman divergence. A budget analysis of dissolved inorganic carbon (DIC) revealed that a weakening of vertical mixing by current‐wind interaction reduces the carbon supply from below, and particularly so in winter. The weaker wind stress additionally lowers the subsurface DIC concentration in summer, which can affect the vertical diffusive flux of carbon in winter. Our study suggests that ignoring current‐wind interactions in the Southern Ocean can overestimate winter CO2outgassing.

     
    more » « less