skip to main content

Title: A lyophilized colorimetric RT-LAMP test kit for rapid, low-cost, at-home molecular testing of SARS-CoV-2 and other pathogens

Access to fast and reliable nucleic acid testing continues to play a key role in controlling the COVID-19 pandemic, especially in the context of increased vaccine break-through risks due to new variants. We report a rapid, low-cost (~ 2 USD), simple-to-use nucleic acid test kit for self-administered at-home testing without lab instrumentation. The entire sample-to-answer workflow takes < 60 min, including noninvasive sample collection, one-step RNA preparation, reverse-transcription loop-mediated isothermal amplification (RT-LAMP) in a thermos, and direct visual inspection of a colorimetric test result. To facilitate long-term storage without cold-chain, a fast one-pot lyophilization protocol was developed to preserve all required biochemical reagents of the colorimetric RT-LAMP test in a single microtube. Notably, the lyophilized RT-LAMP assay demonstrated reduced false positives as well as enhanced tolerance to a wider range of incubation temperatures compared to solution-based RT-LAMP reactions. We validated our RT-LAMP assay using simulated infected samples, and detected a panel of SARS-CoV-2 variants with successful detection of all variants that were available to us at the time. With a simple change of the primer set, our lyophilized RT-LAMP home test can be easily adapted as a low-cost surveillance platform for other pathogens and infectious diseases of global public health importance.

; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Scientific Reports
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The SARS-CoV-2 pandemic has brought to light the need for expedient diagnostic testing. Cost and availability of large-scale testing capacity has led to a lag in turnaround time and hindered contact tracing efforts, resulting in a further spread of SARS-CoV-2. To increase the speed and frequency of testing, we developed a cost-effective single-tube approach for collection, denaturation, and analysis of clinical samples. The approach utilizes 1 µL microbiological inoculation loops to collect saliva, sodium dodecyl sulfate (SDS) to inactivate and release viral genomic RNA, and a diagnostic reaction mix containing polysorbate 80 (Tween 80). In the same tube, the SDS-denatured clinical samples are introduced to the mixtures containing all components for nucleic acids detection and Tween 80 micelles to absorb the SDS and allow enzymatic reactions to proceed, obviating the need for further handling of the samples. The samples can be collected by the tested individuals, further decreasing the need for trained personnel to administer the test. We validated this single-tube sample-to-assay method with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and reverse transcription loop-mediated isothermal amplification (RT-LAMP) and discovered little-to-no difference between Tween- and SDS-containing reaction mixtures, compared to control reactions. This approach reduces the logistical burdenmore »of traditional large-scale testing and provides a method of deployable point-of-care diagnostics to increase testing frequency.

    « less
  2. Rasmussen, Angela L. (Ed.)
    ABSTRACT Isothermal nucleic acid amplification tests (iNATs), such as loop-mediated isothermal amplification (LAMP), are good alternatives to PCR-based amplification assays, especially for point-of-care and low-resource use, in part because they can be carried out with relatively simple instrumentation. However, iNATs can often generate spurious amplicons, especially in the absence of target sequences, resulting in false-positive results. This is especially true if signals are based on non-sequence-specific probes, such as intercalating dyes or pH changes. In addition, pathogens often prove to be moving, evolving targets and can accumulate mutations that will lead to inefficient primer binding and thus false-negative results. Multiplex assays targeting different regions of the analyte and logical signal readout using sequence-specific probes can help to reduce both false negatives and false positives. Here, we describe rapid conversion of three previously described SARS-CoV-2 LAMP assays that relied on a non-sequence-specific readout into individual and multiplex one-pot assays that can be visually read using sequence-specific oligonucleotide strand exchange (OSD) probes. We describe both fluorescence-based and Boolean logic-gated colorimetric lateral flow readout methods and demonstrate detection of SARS-CoV-2 virions in crude human saliva. IMPORTANCE One of the key approaches to treatment and control of infectious diseases, such as COVID-19, is accuratemore »and rapid diagnostics that is widely deployable in a timely and scalable manner. To achieve this, it is essential to go beyond the traditional gold standard of quantitative PCR (qPCR) that is often faced with difficulties in scaling due to the complexity of infrastructure and human resource requirements. Isothermal nucleic acid amplification methods, such as loop-mediated isothermal amplification (LAMP), have been long pursued as ideal, low-tech alternatives for rapid, portable testing. However, isothermal approaches often suffer from false signals due to employment of nonspecific readout methods. We describe general principles for rapidly converting nonspecifically read LAMP assays into assays that are read in a sequence-specific manner by using oligonucleotide strand displacement (OSD) probes. We also demonstrate that inclusion of OSD probes in LAMP assays maintains the simplicity of one-pot assays and a visual yes/no readout by using fluorescence or colorimetric lateral-flow dipsticks while providing accurate sequence-specific readout and the ability to logically query multiplex amplicons for redundancy or copresence. These principles not only yielded high-surety isothermal assays for SARS-CoV-2 but might also aid in the design of more sophisticated molecular assays for other analytes.« less
  3. Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA has demonstrated useful correlation with both coronavirus disease 2019 (COVID-19) cases and clinical testing positivity at the community level. Wastewater surveillance on college campuses has also demonstrated promising predictive capacity for the presence and absence of COVID-19 cases. However, to date, such monitoring has most frequently relied upon composite samplers and reverse transcription quantitative PCR (RT-qPCR) techniques, which limits the accessibility and scalability of wastewater surveillance, particularly in low-resource settings. In this study, we trialed the use of tampons as passive swabs for sample collection and reverse transcription loop-mediated isothermal amplification (RT-LAMP), which does not require sophisticated thermal cycling equipment, to detect SARS-CoV-2 RNA in wastewater. Results for the workflow were available within three hours of sample collection. The RT-LAMP assay is approximately 20 times less analytically sensitive than RT-droplet digital PCR. Nonetheless, during a building-level wastewater surveillance campaign concurrent with independent weekly clinical testing of all students, the method demonstrated a three-day positive predictive value (PPV) of 75% (excluding convalescent cases) and same-day negative predictive value (NPV) of 80% for incident COVID-19 cases. These predictive values are comparable to that reported by wastewater monitoring using RT-qPCR. These observationsmore »suggest that even with lower analytical sensitivity the tampon swab and RT-LAMP workflow offers a cost-effective and rapid approach that could be leveraged for scalable building-level wastewater surveillance for COVID-19 potentially even in low-resource settings.« less
  4. Abstract

    The success of fundamental and applied nucleic acid (NA) research depends on NA purity, but obtaining pure NAs from raw, unprocessed samples is challenging. Purification using solid-phase NA extractions utilizes sequential additions of lysis and wash buffers followed by elution. The resulting eluent contains NAs and carryover of extraction buffers. Typically, these inhibitory buffers are heavily diluted by the reaction mix (e.g., 10x dilution is 1 µL eluent in 9 µL reaction mix), but in applications requiring high sensitivity (e.g., single-cell sequencing, pathogen diagnostics) it is desirable to use low dilutions (e.g., 2x) to maximize NA concentration. Here, we demonstrate pervasive carryover of inhibitory buffers into eluent when several commercial sample-preparation kits are used following manufacturer protocols. At low eluent dilution (2–2.5x) we observed significant reaction inhibition of polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), and reverse transcription (RT). We developed a two-phase wash (TPW) method by adding a wash buffer with low water solubility prior to the elution step. The TPW reduces carryover of extraction buffers, phase-separates from the eluent, and does not reduce NA yield (measured by digital PCR). We validated the TPW for silica columns and magnetic beads by demonstrating significant improvements in performance and reproducibility ofmore »qPCR, LAMP, and RT reactions.

    « less
  5. The COVID-19 pandemic provides an urgent example where a gap exists between availability of state-of-the-art diagnostics and current needs. As assay protocols and primer sequences become widely known, many laboratories perform diagnostic tests using methods such as RT-PCR or reverse transcription loop mediated isothermal amplification (RT-LAMP). Here, we report an RT-LAMP isothermal assay for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and demonstrate the assay on clinical samples using a simple and accessible point-of-care (POC) instrument. We characterized the assay by dipping swabs into synthetic nasal fluid spiked with the virus, moving the swab to viral transport medium (VTM), and sampling a volume of the VTM to perform the RT-LAMP assay without an RNA extraction kit. The assay has a limit of detection (LOD) of 50 RNA copies per μL in the VTM solution within 30 min. We further demonstrate our assay by detecting SARS-CoV-2 viruses from 20 clinical samples. Finally, we demonstrate a portable and real-time POC device to detect SARS-CoV-2 from VTM samples using an additively manufactured three-dimensional cartridge and a smartphone-based reader. The POC system was tested using 10 clinical samples, and was able to detect SARS-CoV-2 from these clinical samples by distinguishingmore »positive samples from negative samples after 30 min. The POC tests are in complete agreement with RT-PCR controls. This work demonstrates an alternative pathway for SARS-CoV-2 diagnostics that does not require conventional laboratory infrastructure, in settings where diagnosis is required at the point of sample collection.« less