skip to main content


Title: The effect of bubble nucleation on the performance of a wickless heat pipe in microgravity
Abstract

Bubble nucleation was investigated in a 20-mm-long, wickless heat pipe on the International Space Station. Over 20 h of running experiments using pentane as the working fluid, more than 100 nucleation events were observed. Bubble nucleation at the heater end temporarily boosted peak pressures and vapor temperatures in the device. At the moment of nucleation, the heater wall temperature significantly decreased due to increased evaporation and the original vapor bubble collapsed due to increased pressure. A thermal model was developed and using the measured temperatures and pressures, heat transfer coefficients near the heater end of the system were extracted. Peak heat transfer coefficients during the nucleation event were over a factor of three higher than at steady-state. The heat transfer coefficient data were all collapsed in the form of a single, linear correlation relating the Nusselt number to the Ohnesorge number.

 
more » « less
Award ID(s):
1637816
NSF-PAR ID:
10366497
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Microgravity
Volume:
8
Issue:
1
ISSN:
2373-8065
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Extensive research has been conducted to resolve small-scale microlayer and bubble nucleation and departure processes in flow boiling, building on controlled pool boiling studies. Large-scale two-phase flow structures, such as Taylor bubbles, are known to locally modify transport due to their wakes and varying surrounding liquid film thickness. However, the effect of interaction of such large-scale flow processes with bubble nucleation is not yet well characterized. Wakes may drive premature nucleating bubble departure, or conversely, suppress boiling due to boundary layer quenching, significantly affecting overall heat transfer. To explore such phenomena, a two-phase flow boiling visualization facility is developed to collect simultaneous high-speed visualization and infrared (IR) thermal imaging temperature distribution data. The test cell channel is 420 mm long with a 10 mm × 10 mm internal square-cross section. A transparent conductive indium tin oxide (ITO) coated sapphire window serves as a heater and IR interface for measuring the internal wall temperature. The facility is charged with a low boiling point fluid (HFE7000) to reduce uncertainties from heat loss to the laboratory environment. Vertical saturated flow boiling wake-nucleation interaction experiments are performed for varying liquid volume flow rates (0.5 − 1.5 L min-1, laminar-to-turbulent Re) and heat fluxes (0 − 100 kW m-2). Discrete vapor slugs are injected to explore interactions with nucleate boiling processes. By measuring film heater power, surface temperature distributions, and pressures, local instantaneous heat transfer coefficients (HTC) can be obtained. Results will be applied to assess simulations at matched conditions for void fraction, and size statistics of flow structures. 
    more » « less
  2. Two-phase thermal management offers cooling performance enhancement by an order of magnitude higher than single-phase flow due to the latent heat associated with phase change. Among the modes of phase-change, boiling can effectively remove massive amounts of heat flux from the surface by employing structured or 3D microporous coatings to significantly enlarge the interfacial surface area for improved heat transfer rate as well as increase the number of potential sites for bubble nucleation and departure. The bubble dynamics during pool boiling are often considered to be essential in predicting heat transfer performance, causing it to be a field of significant interest. While prior investigations seek to modulate the bubble dynamics through either active (e.g., surfactants, electricity) or passive means (e.g., surface wettability, microstructures), the utilization of an ordered microporous architecture to instigate desirable liquid and vapor flow field has been limited. Here, we investigate the bubble dynamics using various spatial patterns of inverse opal channels to induce preferential heat and mass flow site in highly-interconnected microporous media. A fully-coated inverse opal surface demonstrates the intrinsic boiling effects of a uniform microporous coating, which exhibits 156% enhancement in heat transfer coefficient in comparison to the polished silicon surface. The boiling heat transfer performances of spatially-variant inverse opal channels significantly differ based on the pitch spacings between the microporous channels, which dictate the bubble coalescent behaviors and bubble departure characteristics. The elucidated boiling heat transfer performances will provide engineering guidance toward designing optimal two-phase thermal management devices. 
    more » « less
  3. Abstract

    The drag coefficient, Stanton number and Dalton number are of particular importance for estimating the surface turbulent fluxes of momentum, heat and water vapor using bulk parameterization. Although these bulk transfer coefficients have been extensively studied over the past several decades in marine and large‐lake environments, there are no studies analyzing their variability for smaller lakes. Here, we evaluated these coefficients through directly measured surface fluxes using the eddy‐covariance technique over more than 30 lakes and reservoirs of different sizes and depths. Our analysis showed that the transfer coefficients (adjusted to neutral atmospheric stability) were generally within the range reported in previous studies for large lakes and oceans. All transfer coefficients exhibit a substantial increase at low wind speeds (<3 m s−1), which was found to be associated with the presence of gusts and capillary waves (except Dalton number). Stanton number was found to be on average a factor of 1.3 higher than Dalton number, likely affecting the Bowen ratio method. At high wind speeds, the transfer coefficients remained relatively constant at values of 1.6·10−3, 1.4·10−3, 1.0·10−3, respectively. We found that the variability of the transfer coefficients among the lakes could be associated with lake surface area. In flux parameterizations at lake surfaces, it is recommended to consider variations in the drag coefficient and Stanton number due to wind gustiness and capillary wave roughness while Dalton number could be considered as constant at all wind speeds.

     
    more » « less
  4. Abstract

    Gas exchange at high wind speeds is not well understood—few studies have been conducted at wind speeds above 20 ms−1and significant disagreement exists between gas exchange models at high wind speeds. In this study, noble gases (He, Ne, Ar, Kr, and Xe) were measured in 35 experiments in the SUSTAIN wind‐wave tank where the wind speeds ranged from 20 to 50 m s−1and mechanical waves were generated as monochromatic or with a short‐crested JONSWAP frequency spectrum. Bubble size spectra were determined using shadowgraph imagery and wave statistics were measured using a wave wire array. The steady state saturation anomalies and gas fluxes initially increased as wind speeds increased but then leveled off, similar to prior studies of heat and momentum flux coefficients. Noble gas fluxes and steady state saturation anomalies are correlated most strongly with bubble volumes for the less soluble noble gases and with wind speed and wave Reynolds number for the more soluble noble gases. In the JONSWAP experiments, significant wave height was the most important predictor for gas steady state saturation anomalies with correlation coefficients of greater than 0.92 for He, Ne, and Ar (P < 0.05). Furthermore, invasion fluxes were larger than evasion fluxes when other conditions were similar. Taken together, these lab‐based experiments suggest more attention should be paid to parameterizations based on wave characteristics and bubbles and that current wind‐speed based gas exchange parameterizations should not be applied to conditions with very high wind speeds.

     
    more » « less
  5. Abstract

    Wave breaking modulates air‐sea fluxes of energy, momentum, heat, and gases. Building on recent advances in the modeling of CO2gas exchange and wave breaking, we investigate the variability of bubble‐mediated gas transfer coefficients due to wave‐current interactions. Submesoscale current gradients strongly modulate wave breaking, which can enhance the bubble‐mediated gas transfer coefficient along temperature fronts and cold filaments. The enhancement of the gas transfer coefficient is over relatively small areas averaging out over larger regions. However, the correlation between positively anomalous gas transfer coefficients and regions with strong downwelling could potentially enhance CO2exchange over regions with increased submesoscale activity. An empirical scaling based on the mean wave period, root‐mean‐square current gradients, and friction velocity can explain the root‐mean‐square differences of gas transfer coefficients computed from solutions with and without current forcing.

     
    more » « less