skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sulfur isotopes reveal agricultural changes to the modern sulfur cycle
Abstract The environmental fates and consequences of intensive sulfur (S) applications to croplands are largely unknown. In this study, we used S stable isotopes to identify and trace agricultural S from field-to-watershed scales, an initial and timely step toward constraining the modern S cycle. We conducted our research within the Napa River Watershed, California, US, where vineyards receive frequent fungicidal S sprays. We measured soil and surface water sulfate concentrations ([SO42−]) and stable isotopes (δ34S–SO42−), which we refer to in combination as the ‘S fingerprint’. We compared samples collected from vineyards and surrounding forests/grasslands, which receive background atmospheric and geologic S sources. Vineyardδ34S–SO42−values were 9.9 ± 5.9‰ (median ± interquartile range), enriched by ∼10‰ relative to forests/grasslands (−0.28 ± 5.7‰). Vineyards also had roughly three-fold higher [SO42−] than forests/grasslands (13.6 and 5.0 mg SO42−–S l−1, respectively). Napa Riverδ34S–SO42−values, reflecting the watershed scale, were similar to those from vineyards (10.5 ± 7.0‰), despite vineyard agriculture constituting only ∼11% of the watershed area. Combined, our results provide important evidence that agricultural S is traceable at field-to-watershed scales, a critical step toward determining the consequences of agricultural alterations to the modern S cycle.  more » « less
Award ID(s):
1945388
PAR ID:
10366534
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
17
Issue:
5
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 054032
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stable isotope fractionation of sulfur offers a window into Io's tidal heating history, which is difficult to constrain because Io's dynamic atmosphere and high resurfacing rates leave it with a young surface. We constructed a numerical model to describe the fluxes in Io's sulfur cycle using literature constraints on rates and isotopic fractionations of relevant processes. Combining our numerical model with measurements of the34S/32S ratio in Io's atmosphere, we constrain the rates for the processes that move sulfur between reservoirs and model the evolution of sulfur isotopes over time. Gravitational stratification of SO2in the upper atmosphere, leading to a decrease in34S/32S with increasing altitude, is the main cause of sulfur isotopic fractionation associated with loss to space. Efficient recycling of the atmospheric escape residue into the interior is required to explain the34S/32S enrichment magnitude measured in the modern atmosphere. We hypothesize this recycling occurs by SO2surface frost burial and SO2reaction with crustal rocks, which founder into the mantle and/or mix with mantle‐derived magmas as they ascend. Therefore, we predict that magmatic SO2plumes vented from the mantle to the atmosphere will have lower34S/32S than the ambient atmosphere, yet are still significantly enriched compared to solar‐system average sulfur. Observations of atmospheric variations in34S/32S with time and/or location could reveal the average mantle melting rate and hence whether the current tidal heating rate is anomalous compared to Io's long‐term average. Our modeling suggests that tides have heated Io for >1.6 Gyr if Io today is representative of past Io. 
    more » « less
  2. Abstract Stibnite is a relatively common mineral in epithermal deposits, with little known about Sb transport and efficient stibnite precipitation. The famous Kremnica Au-Ag low-sulfidation deposit and Zlatá Baňa intermediate-sulfidation Pb-Zn-Cu-Au-Ag-Sb deposit are hosted in two different Neogene volcanic fields in Western Carpathians, Slovakia. In both deposits, stibnite-rich veins occur outside of major vein structures, accompanied by illite, illite/smectite, and kaolinite alteration, and affiliated to late-stage fluids (< 2 wt% NaCl eq., < 150 °C). Sulfur isotopic composition of stibnite and sulfides is different at both deposits, likely due to a different magmatic-hydrothermal evolution of the parental magmatic chambers in the Central and Eastern Slovak Volcanic Fields. The Sb isotopes (δ123Sb), however, show similar values and trends of gradual simultaneous increase with δ34S values, explained by a progressive precipitation of stibnite and its fractionation with the fluid. The data were modeled by two coupled Rayleigh fractionation models, (for Sb and for S), assuming a predominant Sb transport in HSb2S4with a variable amount of S species. Higher molality ratio mS/mSbof fluids was found in Kremnica (~ 3–4) than in Zlatá Baňa (~ 2). At both deposits, the heaviest δ123Sb values are accompanied by a decrease in the δ34S values probably due to the commencement of pyrite/marcasite precipitation. According to thermodynamic models of solubility of Sb(III) complexes and observations from active geothermal fields, stibnite precipitation was triggered by temperature decrease accompanied by mixing with a mildly acidic fluid (pH 4–5) of a steam-heated CO2-rich condensate on margins and in the final stages of epithermal systems. The proposed model for the origin of stibnite-bearing veins in epithermal systems can be used for their better targeting and efficient mineral exploration. 
    more » « less
  3. Abstract Sulfur belongs among H2O, CO2, and Cl as one of the key volatiles in Earth’s chemical cycles. High oxygen fugacity, sulfur concentration, and δ34S values in volcanic arc rocks have been attributed to significant sulfate addition by slab fluids. However, sulfur speciation, flux, and isotope composition in slab-dehydrated fluids remain unclear. Here, we use high-pressure rocks and enclosed veins to provide direct constraints on subduction zone sulfur recycling for a typical oceanic lithosphere. Textural and thermodynamic evidence indicates the predominance of reduced sulfur species in slab fluids; those derived from metasediments, altered oceanic crust, and serpentinite have δ34S values of approximately −8‰, −1‰, and +8‰, respectively. Mass-balance calculations demonstrate that 6.4% (up to 20% maximum) of total subducted sulfur is released between 30–230 km depth, and the predominant sulfur loss takes place at 70–100 km with a net δ34S composition of −2.5 ± 3‰. We conclude that modest slab-to-wedge sulfur transport occurs, but that slab-derived fluids provide negligible sulfate to oxidize the sub-arc mantle and cannot deliver34S-enriched sulfur to produce the positive δ34S signature in arc settings. Most sulfur has negative δ34S and is subducted into the deep mantle, which could cause a long-term increase in the δ34S of Earth surface reservoirs. 
    more » « less
  4. RationaleSulfur isotope analysis of organic sulfur‐containing molecules has previously been hindered by challenging preparatory chemistry and analytical requirements for large sample sizes. The natural‐abundance sulfur isotopic compositions of the sulfur‐containing amino acids, cysteine and methionine, have therefore not yet been investigated despite potential utility in biomedicine, ecology, oceanography, biogeochemistry, and other fields. MethodsCysteine and methionine were subjected to hot acid hydrolysis followed by quantitative oxidation in performic acid to yield cysteic acid and methionine sulfone. These stable, oxidized products were then separated by reversed‐phase high‐performance liquid chromatography (HPLC) and verified via offline liquid chromatography/mass spectrometry (LC/MS). The sulfur isotope ratios (δ34S values) of purified analytes were then measured via combustion elemental analyzer coupled to isotope ratio mass spectrometry (EA/IRMS). The EA was equipped with a temperature‐ramped chromatographic column and programmable helium carrier flow rates. ResultsOn‐column focusing of SO2in the EA/IRMS system, combined with reduced He carrier flow during elution, greatly improved sensitivity, allowing precise (0.1–0.3‰ 1 s.d.) δ34S measurements of 1 to 10 μg sulfur. We validated that our method for purification of cysteine and methionine was negligibly fractionating using amino acid and protein standards. Proof‐of‐concept measurements of fish muscle tissue and bacteria demonstrated differences up to 4‰ between the δ34S values of cysteine and methionine that can be connected to biosynthetic pathways. ConclusionsWe have developed a sensitive, precise method for measuring the natural‐abundance sulfur isotopic compositions of cysteine and methionine isolated from biological samples. This capability opens up diverse applications of sulfur isotopes in amino acids and proteins, from use as a tracer in organisms and the environment, to fundamental aspects of metabolism and biosynthesis. 
    more » « less
  5. Abstract Recycling of oxidized sulfur from subducting slabs to the mantle wedge provides simultaneous explanations for the elevated oxygen fugacity (fO2) in subduction zones, their high hydrothermal and magmatic sulfur outputs, and the enriched sulfur isotopic signatures (i.e., δ34S > 0‰) of these outputs. However, a quantitative understanding of the abundance and speciation of sulfur in slab fluids consistent with high pressure experiments is lacking. Here we analyze published experimental data for anhydrite solubility in H2O‐NaCl solutions to calibrate a high‐pressure aqueous speciation model of sulfur within the framework of the deep earth water model. We characterize aqueous complexes, required to account for the high experimental anhydrite solubilities. We then use this framework to predict the speciation and solubility of sulfur in chemically complex fluids in equilibrium with model subducting mafic and ultramafic lithologies, from 2 to 3 GPa and 400 to 800°C at logfO2from FMQ‐2 to FMQ+4. We show that sulfate complexes of calcium and sodium markedly enhance the stability of sulfate in moderately oxidized fluids in equilibrium with pyrite atfO2conditions of FMQ+1 to +2, causing large sulfur isotope fractionations up to 10‰ in the fluid relative to the slab. Such fluids could impart oxidized, sulfur‐rich and high δ34S signatures to the mantle wedge that are ultimately transferred to arc magmas, without the need to invoke34S‐rich subducted lithologies. 
    more » « less