skip to main content

Title: A framework for educating and empowering students by teaching about history and consequences of bias in STEM

Racism and bias are pervasive in society—and science, technology, engineering, and mathematics (STEM) fields are not immune to these issues. It is imperative that we educate ourselves and our students about the history and consequences of this bias in STEM, investigate the research showing bias toward marginalized groups, understand how to interpret misuses of science in perpetuating bias, and identify advances and solutions to overcome racism and bias throughout our professional and personal lives. Here, we present one model for teaching a universal course for participants of all professional stages to address these issues and initiate solutions. As very few institutions require students to enroll in courses on racism and bias in STEM or even offer such courses, our curriculum could be used as a blueprint for implementation across institutions. Ultimately, institutions and academic disciplines can incorporate this important material with more region and/or discipline specific studies of bias.

 ;  ;  ;  ;  
Publication Date:
Journal Name:
Pathogens and Disease
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Repeated calls to diversify the population of students earning undergraduate degrees in science, technology, engineering, and mathematics (STEM) fields have noted the greater diversity of community college students and their potential to thus have an impact on the racial/ethnic composition of 4-year degree earners. In this paper, we investigate barriers and supports to Black women’s success in STEM, using longitudinal interview data with seven Black women who were enrolled at community colleges and stated an interest in majoring in STEM at 4-year institutions.


    Our findings highlight a contrast between community colleges and universities. At community colleges, Black women were able to form supportive relationships with professors and peers, downplayed the potential of racism and sexism to derail their STEM ambitions, and saw little to no impact of bias on their educational experiences. Those students who transferred characterized university climates very differently, as they struggled to form supportive relationships and experienced racism and sexism from professors and peers.


    We conclude using Patricia Hill Collins’ Domains of Power framework to categorize students’ experiences, then end with recommendations for change that will result in less alienating experiences for Black women, among other minoritized students.

  2. The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is a five-year program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This project is funded by an NSF S-STEM (Scholarships in Science, Technology, Engineering, and Mathematics) grant awarded in January 2017. Through an inclusive and long-range effort, the college identified a strong need for financial and comprehensive supports for STEM students. This project will offer financial, academic, and professional support to three two-year cohorts of students. The SEECRS project aims to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Scholarship recipients will be supported through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Students are introduced to disciplines of interest through opportunities to engage in course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and seminars presented by STEM professionals. Communities of practice will be nurtured through the introduction of cohort building and facultymore »mentorship. Cohort development starts with a required two-credit course for all scholars that emphasizes STEM identity development, specifically focusing on identifying and coping with the ways non-dominant individuals (racial/ethnic minorities, non-male gender, lower socioeconomic status, first-generation, 2-year community college vs. 4-year institutions) are made to feel as outsiders in STEM. Each SEECRS scholar is paired with a faculty mentor who engages in ongoing mentor training. The project evaluation will determine the efficacy of the project activities in achieving their intended outcomes. Specifically, we will collect data to answer the research question: To what extent can a guided pathways approach provide a coordinated and supported STEM experience at Whatcom Community College that: (1) increases student success, and (2) positively shifts students’ STEM self-identity? The evaluation will employ a quasi-experimental research design, specifically a pretest-posttest design with a matched comparison group. Our first cohort of 14 students was selected over two application rounds (winter and summer 2017). We awarded ten full scholarships and four half-scholarships based on financial need data. Cohort demographics of note compared to institutional percentages are: females (64% vs. 57%), Hispanic (14% vs. 17%), African American (7% vs. 2%), white (79% vs. 66%), first generation college bound (43% vs. 37%). The cohort is comprised of six students interested in engineering, six in biology, and one each in geology and environmental sciences. With increased communication between the project team, our Financial Aid office, Entry and Advising, high school outreach, and the Title III grant-funded Achieve, Inspire, Motivate (AIM) Program, as well as a longer advertising time, we anticipate significantly enhancing our applicant pool for the next cohort. The results and lessons learned from our first year of implementation will be presented.« less
  3. Abstract Background

    Continuous calls for reform in science education emphasize the need to provide science experiences in lower-division courses to improve the retention of STEM majors and to develop science literacy and STEM skills for all students. Open or authentic inquiry and undergraduate research are effective science experiences leading to multiple gains in student learning and development. Most inquiry-based learning activities, however, are implemented in laboratory classes and the majority of them are guided inquiries. Although course-based undergraduate research experiences have significantly expanded the reach of the traditional apprentice approach, it is still challenging to provide research experiences to nonmajors and in large introductory courses. We examined student learning through a web-based authentic inquiry project implemented in a high-enrollment introductory ecology course for over a decade.


    Results from 10 years of student self-assessment of learning showed that the authentic inquiry experiences were consistently associated with significant gains in self-perception of interest and understanding and skills of the scientific process for all students—both majors and nonmajors, both lower- and upper-division students, both women and men, and both URM and non-URM students. Student performance in evaluating the quality of an inquiry report, before and after the inquiry project, also showed significant learning gainsmore »for all students. The authentic inquiry experiences proved highly effective for lower-division students, nonmajors, and women and URM students, whose learning gains were similar to or greater than those of their counterparts. The authentic inquiry experiences were particularly helpful to students who were less prepared with regard to the ability to evaluate a scientific report and narrowed the performance gap.


    These findings suggest that authentic inquiry experiences can serve as an effective approach for engaging students in high-enrollment, introductory science courses. They can facilitate development of science literacy and STEM skills of all students, skills that are critical to students’ personal and professional success and to informed engagement in civic life.

    « less
  4. Education researchers often compare performance across race and gender on research-based assessments of physics knowledge to investigate the impacts of racism and sexism on physics student learning. These investigations' claims rely on research-based assessments providing reliable, unbiased measures of student knowledge across social identity groups. We used classical test theory and differential item functioning (DIF) analysis to examine whether the items on the Force Concept Inventory (FCI) provided unbiased data across social identifiers for race, gender, and their intersections. The data was accessed through the Learning About STEM Student Outcomes platform and included responses from 4,848 students posttests in 152 calculus-based introductory physics courses from 16 institutions. The results indicated that the majority of items (22) on the FCI were biased towards a group. These results point to the need for instrument validation to account for item bias and the identification or development of fair research-based assessments.
  5. In this Work-in-Progress paper, we report on the challenges and successes of a large-scale First- Year Engineering and Computer Science Program at an urban comprehensive university, using quantitative and qualitative assessment results. Large-scale intervention programs are especially relevant to comprehensive minority serving institutions (MSIs) that serve a high percentage of first-generation college students who often face academic and socioeconomic barriers. Our program was piloted in 2015 with 30 engineering students, currently enrolls 60 engineering and computer science students, and is expected to grow to over 200 students by Fall 2020. The firstyear program interventions include: (i) block schedules for each cohort in the first year; (ii) redesigned project-based introduction to engineering and introduction to computer science courses; (iii) an introduction to mechanics course, which provides students with the foundation needed to succeed in the traditional physics sequence; and (iv) peer-led supplemental instruction (SI) workshops for Calculus, Physics and Chemistry. A faculty mentorship program was implemented to provide additional support to students, but was phased out after the first year. Challenges encountered in the process of expanding the program include administrative, such as scheduling and training faculty and SI leaders; barriers to improvement of math and science instruction; and more holisticmore »concerns such as creating a sense of community and identity for the program. Quantitative data on academic performance includes metrics such as STEM GPA and persistence, along with the Force Concept Inventory (FCI) for physics. Qualitative assessments of the program have used student and instructor surveys, focus groups, and individual interviews to measure relationships among factors associated with college student support and to extract student perspectives on what works best for them. Four years of data tell a mixed story, in which the qualitative effect of the interventions on student confidence and identity is strong, while academic performance is not yet significantly different than that of comparison groups. One of the most significant results of the program is the development of a FYrE Professional Learning Community which includes faculty (both tenure-track and adjunct), department chairs, staff, and administrators from across the campus.« less