skip to main content


Title: Copepod habitat suitability estimates vary among oxygen metrics in Chesapeake Bay
Abstract

Seasonal deoxygenation in coastal and estuarine systems leads to decreased available habitat for many planktonic organisms. However, the volume of available habitat can be defined in different ways, depending on the oxygen metrics employed. Here, we used monitoring data for water quality to estimate the seasonal and inter-annual variability in habitat for the copepod Acartia tonsa in Chesapeake Bay, defined using three different oxygen metrics: a concentration-based (2 mg l−1) definition of hypoxia, and two partial pressure-based definitions corresponding to limiting oxygen demand (Pcrit), and the minimum requirement for respiration (Pleth). We examined spatial and temporal trends in the oxygen habitat, and compared habitat estimates to zooplankton abundance and distribution and in relation to hydrologically wet, average, and dry years. Pcrit predicted the largest volume of unsuitable deoxygenated habitat over space and time, and dry conditions were associated with a decreased extent of deoxygenated habitat compared to average and wet conditions. No clear relationship between copepod abundance and habitat availability was observed, but the position of peak abundance of A. tonsa correlated to the extent of deoxygenated habitat using Pcrit. Species-specific metrics to describe oxygen habitat may be more useful in understanding the non-lethal impacts of deoxygenation.

 
more » « less
NSF-PAR ID:
10366580
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
ICES Journal of Marine Science
Volume:
79
Issue:
3
ISSN:
1054-3139
Format(s):
Medium: X Size: p. 855-867
Size(s):
["p. 855-867"]
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Increasing deoxygenation (loss of oxygen) of the ocean, including expansion of oxygen minimum zones (OMZs), is a potentially important consequence of global warming. We examined present-day variability of vertical distributions of 23 calanoid copepod species in the Eastern Tropical North Pacific (ETNP) living in locations with different water column oxygen profiles and OMZ intensity (lowest oxygen concentration and its vertical extent in a profile). Copepods and hydrographic data were collected in vertically stratified day and night MOCNESS (Multiple Opening/Closing Net and Environmental Sensing System) tows (0–1000 m) during four cruises over a decade (2007– 2017) that sampled four ETNP locations: Costa Rica Dome, Tehuantepec Bowl, and two oceanic sites further north (21– 22 N) off Mexico. The sites had different vertical oxygen profiles: some with a shallow mixed layer, abrupt thermocline, and extensive very low oxygen OMZ core; and others with a more gradual vertical development of the OMZ (broad mixed layer and upper oxycline zone) and a less extensive OMZ core where oxygen was not as low. Calanoid copepod species (including examples from the genera Eucalanus, Pleuromamma, and Lucicutia) demonstrated different distributional strategies (implying different physiological characteristics) associated with this variability. We identified sets of species that (1) changed their vertical distributions and depth of maximum abundance associated with the depth and intensity of the OMZ and its oxycline inflection points; (2) shifted their depth of diapause; (3) adjusted their diel vertical migration, especially the nighttime upper depth; or (4) expanded or contracted their depth range within the mixed layer and upper part of the thermocline in association with the thickness of the aerobic epipelagic zone (habitat compression concept). These distribution depths changed by tens to hundreds of meters depending on the species, oxygen profile, and phenomenon. For example, at the lower oxycline, the depth of maximum abundance for Lucicutia hulsemannae shifted from  600 to  800 m, and the depth of diapause for Eucalanus inermis shifted from  500 to  775 m, in an expanded OMZ compared to a thinner OMZ, but remained at similar low oxygen levels in both situations. These species or life stages are examples of “hypoxiphilic” taxa. For the migrating copepod Pleuromamma abdominalis, its nighttime depth was shallow ( 20 m) when the aerobic mixed layer was thin and the low-oxygen OMZ broad, but it was much deeper ( 100 m) when the mixed layer and higher oxygen extended deeper; daytime depth in both situations was  300 m. Because temperature decreased with depth, these distributional depth shifts had metabolic implications. The upper ocean to mesopelagic depth range encompasses a complex interwoven ecosystem characterized by intricate relationships among its inhabitants and their environment. It is a critically important zone for oceanic biogeochemical and export processes and hosts key food web components for commercial fisheries. Among the zooplankton, there will likely be winners and losers with increasing ocean deoxygenation as species cope with environmental change. Changes in individual copepod species abundances, vertical distributions, and life history strategies may create potential perturbations to these intricate food webs and processes. Present-day variability provides a window into future scenarios and potential effects of deoxygenation. 
    more » « less
  2. Abstract

    Forecasts from climate models and oceanographic observations indicate increasing deoxygenation in the global oceans and an elevated frequency and intensity of hypoxic events in the coastal zone, which have the potential to affect marine biodiversity and fisheries. Exposure to low dissolved oxygen (DO) conditions may have deleterious effects on early life stages in fishes. This study aims to identify thresholds to hypoxia while testing behavioral and physiological responses of two congeneric species of kelp forest fish to four DO levels, ranging from normoxic to hypoxic (8.7, 6.0, 4.1, and 2.2 mg O2/L). Behavioral tests identified changes in exploratory behavior and turning bias (lateralization), whereas physiological tests focused on determining changes in hypoxia tolerance (pCrit), ventilation rates, and metabolic rates, with impacts on the resulting capacity for aerobic activity. Our findings indicated that copper rockfish (Sebastes caurinus) and blue rockfish (Sebastes mystinus) express sensitivity to hypoxia; however, the strength of the response differed between species. Copper rockfish exhibited reduced absolute lateralization and increased escape time at the lowest DO levels, whereas behavioral metrics for blue rockfish did not vary with oxygen level. Both species exhibited decreases in aerobic scope (as a function of reduced maximum metabolic rate) and increases in ventilation rates to compensate for decreasing oxygen levels. Blue rockfish had a lower pCrit and stronger acclimation response compared to copper rockfish. The differences expressed by each species suggest that acclimatization to changing ocean conditions may vary, even among related species that recruit to the same kelp forest habitat, leading to winners and losers under future ocean conditions. Exposure to hypoxia can decrease individual physiological fitness through metabolic and aerobic depression and changes to anti‐predator behavior, with implications for the outcome of ecological interactions and the management of fish stocks in the face of climate change.

     
    more » « less
  3. Abstract

    Soil water content (SWC) is a fundamental variable involved in several hydrological processes governing catchment functioning. Comparative analysis of hydrological processes in different catchments based on SWC data is therefore beneficial to infer driving factors of catchment response. Here, we explored the use of high‐temporal resolution SWC data in three forested catchments (2.4–60 ha) in different European climates to characterize hydrological responses during wet and dry conditions. The investigated systems include Ressi, Italy, with a humid temperate climate, Weierbach, Luxembourg, with a semi‐oceanic climate, and Can Vila, Spain, with a Mediterranean climate. We introduced a new SWC metric defined as the difference between seasonal mean SWC at a relatively shallow and a deep soil layer. The difference is classified in three distinct states: similar SWC between the two layers, higher SWC in the deeper layer, and higher SWC in the shallow layer. In the most humid site, Ressi, we frequently found similar SWC at the two soil depths which was associated with high runoff ratios. Despite similar precipitation amounts in Can Vila and Weierbach, SWC patterns were very different in both catchments. In Weierbach, SWC was similar across the entire soil profile during wet conditions, whereas evaporation of shallow water resulted in higher SWC in the deep soil layer during dry conditions. This led to high runoff ratios during wet conditions and low runoff ratios during dry conditions. In Can Vila, SWC was consistently higher in the deeper layer compared to the shallow layer, irrespective of the season, suggesting an important role of hydraulic redistribution and vertical water movement in this site. Our approach provides an easy and useful method to assess differences in hydrological behaviour solely based on SWC data. As similar datasets are increasingly collected and available, this opens the possibility for further analyses and comparisons in sites around the globe with contrasted physiographic and climate characteristics.

     
    more » « less
  4. Abstract

    Precipitation prediction at seasonal timescales is important for planning and management of water resources as well as preparedness for hazards such as floods, droughts and wildfires. Quantifying predictability is quite challenging as a consequence of a large number of potential drivers, varying antecedent conditions, and small sample size of high‐quality observations available at seasonal timescales, that in turn, increases prediction uncertainty and the risk of model overfitting. Here, we introduce a generalized probabilistic framework to account for these issues and assess predictability under uncertainty. We focus on prediction of winter (Nov–Mar) precipitation across the contiguous United States, using sea surface temperature‐derived indices (averaged in Aug–Oct) as predictors. In our analysis we identify “predictability hotspots,” which we define as regions where precipitation is inherently more predictable. Our framework estimates the entire predictive distribution of precipitation using copulas and quantifies prediction uncertainties, while employing principal component analysis for dimensionality reduction and a cross validation technique to avoid overfitting. We also evaluate how predictability changes across different quantiles of the precipitation distribution (dry, normal, wet amounts) using a multi‐category 3 × 3 contingency table. Our results indicate that well‐defined predictability hotspots occur in the Southwest and Southeast. Moreover, extreme dry and wet conditions are shown to be relatively more predictable compared to normal conditions. Our study may help with water resources management in several subregions of the United States and can be used to assess the fidelity of earth system models in successfully representing teleconnections and predictability.

     
    more » « less
  5. null (Ed.)
    In drylands, most studies of extreme precipitation events examine effects of individual years or short-term events, yet multiyear periods (>3 y) are expected to have larger impacts on ecosystem dynamics. Our goal was to take advantage of a sequence of multiple long-term (4-y) periods (dry, wet, average) that occurred naturally within a 26-y time frame to examine responses of plant species richness to extreme rainfall in grasslands and shrublands of the Chihuahuan Desert. Our hypothesis was that richness would be related to rainfall amount, and similar in periods with similar amounts of rainfall. Breakpoint analyses of water-year precipitation showed five sequential periods (1993–2018): AVG1 (mean = 22 cm/y), DRY1 (mean = 18 cm/y), WET (mean = 30 cm/y), DRY2 (mean = 18 cm/y), and AVG2 (mean = 24 cm/y). Detailed analyses revealed changes in daily and seasonal metrics of precipitation over the course of the study: the amount of nongrowing season precipitation decreased since 1993, and summer growing season precipitation increased through time with a corresponding increase in frequency of extreme rainfall events. This increase in summer rainfall could explain the general loss in C3 species after the wet period at most locations through time. Total species richness in the wet period was among the highest in the five periods, with the deepest average storm depth in the summer and the fewest long duration (>45 day) dry intervals across all seasons. For other species-ecosystem combinations, two richness patterns were observed. Compared to AVG2, AVG1 had lower water-year precipitation yet more C3 species in upland grasslands, creosotebush, and mesquite shrublands, and more C4 perennial grasses in tarbush shrublands. AVG1 also had larger amounts of rainfall and more large storms in fall and spring with higher mean depths of storm and lower mean dry-day interval compared with AVG2. While DRY1 and DRY2 had the same amount of precipitation, DRY2 had more C4 species than DRY1 in creosote bush shrublands, and DRY1 had more C3 species than DRY2 in upland grasslands. Most differences in rainfall between these periods occurred in the summer. Legacy effects were observed for C3 species in upland grasslands where no significant change in richness occurred from DRY1 to WET compared with a 41% loss of species from the WET to DRY2 period. The opposite asymmetry pattern was found for C4 subdominant species in creosote bush and mesquite shrublands, where an increase in richness occurred from DRY1 to WET followed by no change in richness from WET to DRY2. Our results show that understanding plant biodiversity of Chihuahuan Desert landscapes as precipitation continues to change will require daily and seasonal metrics of rainfall within a wet-dry period paradigm, as well as a consideration of species traits (photosynthetic pathways, lifespan, morphologies). Understanding these relationships can provide insights into predicting species-level dynamics in drylands under a changing climate. 
    more » « less