skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global co‐occurrence of methanogenic archaea and methanotrophic bacteria in Microcystis aggregates
Summary Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane‐metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floatingMicrocystisaggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes. Methanogenic archaea (mainlyMethanoregulaandMethanosaeta) were detectable in 5 of the 10 lakes and constituted the majority (~50%–90%) of the archaeal community in these lakes. Three of the 10 lakes contained relatively more abundant methanotrophs than the other seven lakes, with the methanotrophic generaMethyloparacoccus,Crenothrix, and an uncultured species related toMethylobacterdominating and nearly exclusively found in each of those three lakes. These three are among the five lakes in which methanogens were observed. Operational taxonomic unit (OTU) richness and abundance of methanotrophs were strongly positively correlated with those of methanogens, suggesting that their activities may be coupled. TheseMicrocystis‐aggregate‐associated methanotrophs may be responsible for a hitherto overlooked sink for methane in surface freshwaters, and their co‐occurrence with methanogens sheds light on the methane cycle in cyanobacterial aggregates.  more » « less
Award ID(s):
1736255
PAR ID:
10366591
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Environmental Microbiology
Volume:
23
Issue:
11
ISSN:
1462-2912
Page Range / eLocation ID:
p. 6503-6519
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Bacteria play key roles in the function and diversity of aquatic systems, but aside from study of specific bloom systems, little is known about the diversity or biogeography of bacteria associated with harmful cyanobacterial blooms (cyanoHABs). CyanoHAB species are known to shape bacterial community composition and to rely on functions provided by the associated bacteria, leading to the hypothesized cyanoHAB interactome, a coevolved community of synergistic and interacting bacteria species, each necessary for the success of the others. Here, we surveyed the microbiome associated withMicrocystis aeruginosaduring blooms in 12 lakes spanning four continents as an initial test of the hypothesizedMicrocystisinteractome. We predicted that microbiome composition and functional potential would be similar across blooms globally. Our results, as revealed by 16S rRNA sequence similarity, indicate thatM. aeruginosais cosmopolitan in lakes across a 280° longitudinal and 90° latitudinal gradient. The microbiome communities were represented by a wide range of operational taxonomic units and relative abundances. Highly abundant taxa were more related and shared across most sites and did not vary with geographic distance, thus, likeMicrocystis, revealing no evidence for dispersal limitation. High phylogenetic relatedness, both within and across lakes, indicates that microbiome bacteria with similar functional potential were associated with all blooms. WhileMicrocystisand the microbiome bacteria shared many genes, whole‐community metagenomic analysis revealed a suite of biochemical pathways that could be considered complementary. Our results demonstrate a high degree of similarity across globalMicrocystisblooms, thereby providing initial support for the hypothesizedMicrocystisinteractome. 
    more » « less
  2. Zhou, Ning-Yi (Ed.)
    ABSTRACT Methane oxidation by aerobic methanotrophs is well known to be strongly regulated by the availability of copper, i.e., the “copper switch.” That is, there are two forms of methane monooxygenase: a cytoplasmic or soluble methane monooxygenase (sMMO) and a membrane-bound or particulate methane monooxygenase (pMMO). sMMO is only expressed and active in the absence of copper, while pMMO requires copper. Previous work has also shown that one gene in the operon of the soluble methane monooxygenase—mmoD—also plays a critical role in the “copper switch,” but its function is still vague. Herein, we show that MmoD is not needed for the expression of genes in the sMMO gene cluster but is critical for the formation of sMMO polypeptides and sMMO activity inMethylosinus trichosporiumOB3b, indicating that MmoD plays a key post-transcriptional role in the maturation of sMMO. Furthermore, data also show that MmoD controls the expression of methanobactin, a copper-binding compound used by some methanotrophs, includingM. trichosporiumOB3b, for copper sequestration. Collectively, these results provide greater insights into the components of the “copper switch” and provide new strategies to manipulate methanotrophic activity. IMPORTANCEAerobic methanotrophs play a critical role in the global carbon cycle, particularly in controlling net emissions of methane to the atmosphere. As methane is a much more potent greenhouse gas than carbon dioxide, there is increasing interest in utilizing these microbes to mitigate future climate change by increasing their ability to consume methane. Any such efforts, however, require a detailed understanding of how to manipulate methanotrophic activity. Herein, we show that methanotrophic activity is strongly controlled by MmoD, i.e., MmoD regulates methanotrophy through the post-transcriptional regulation of the soluble methane monooxygenase and controls the ability of methanotrophs to collect copper. Such data are likely to prove quite useful in future strategies to enhance the use of methanotrophs to not only reduce methane emissions but also remove methane from the atmosphere. 
    more » « less
  3. Abstract BackgroundDuring the bloom season, the colonial cyanobacteriumMicrocystisforms complex aggregates which include a diverse microbiome within an exopolymer matrix. Early research postulated a simple mutualism existing with bacteria benefitting from the rich source of fixed carbon andMicrocystisreceiving recycled nutrients. Researchers have since hypothesized thatMicrocystisaggregates represent a community of synergistic and interacting species, an interactome, each with unique metabolic capabilities that are critical to the growth, maintenance, and demise ofMicrocystisblooms. Research has also shown that aggregate-associated bacteria are taxonomically different from free-living bacteria in the surrounding water. Moreover, research has identified little overlap in functional potential betweenMicrocystisand members of its microbiome, further supporting the interactome concept. However, we still lack verification of general interaction and know little about the taxa and metabolic pathways supporting nutrient and metabolite cycling withinMicrocystisaggregates. ResultsDuring a 7-month study of bacterial communities comparing free-living and aggregate-associated bacteria in Lake Taihu, China, we found that aerobic anoxygenic phototrophic (AAP) bacteria were significantly more abundant withinMicrocystisaggregates than in free-living samples, suggesting a possible functional role for AAP bacteria in overall aggregate community function. We then analyzed gene composition in 102 high-quality metagenome-assembled genomes (MAGs) of bloom-microbiome bacteria from 10 lakes spanning four continents, compared with 12 completeMicrocystisgenomes which revealed that microbiome bacteria andMicrocystispossessed complementary biochemical pathways that could serve in C, N, S, and P cycling. Mapping published transcripts fromMicrocystisblooms onto a comprehensive AAP and non-AAP bacteria MAG database (226 MAGs) indicated that observed high levels of expression of genes involved in nutrient cycling pathways were in AAP bacteria. ConclusionsOur results provide strong corroboration of the hypothesizedMicrocystisinteractome and the first evidence that AAP bacteria may play an important role in nutrient cycling withinMicrocystisaggregate microbiomes. 
    more » « less
  4. Glass, Jennifer B. (Ed.)
    ABSTRACT Interactions between bacteria and phytoplankton can influence primary production, community composition, and algal bloom development. However, these interactions are poorly described for many consortia, particularly for freshwater bloom-forming cyanobacteria. Here, we assessed the gene content and expression of two uncultivated Acidobacteria from Lake Erie Microcystis blooms. These organisms were targeted because they were previously identified as important catalase producers in Microcystis blooms, suggesting that they protect Microcystis from H 2 O 2 . Metatranscriptomics revealed that both Acidobacteria transcribed genes for uptake of organic compounds that are known cyanobacterial products and exudates, including lactate, glycolate, amino acids, peptides, and cobalamins. Expressed genes for amino acid metabolism and peptide transport and degradation suggest that use of amino acids and peptides by Acidobacteria may regenerate nitrogen for cyanobacteria and other organisms. The Acidobacteria genomes lacked genes for biosynthesis of cobalamins but expressed genes for its transport and remodeling. This indicates that the Acidobacteria obtained cobalamins externally, potentially from Microcystis , which has a complete gene repertoire for pseudocobalamin biosynthesis; expressed them in field samples; and produced pseudocobalamin in axenic culture. Both Acidobacteria were detected in Microcystis blooms worldwide. Together, the data support the hypotheses that uncultured and previously unidentified Acidobacteria taxa exchange metabolites with phytoplankton during harmful cyanobacterial blooms and influence nitrogen available to phytoplankton. Thus, novel Acidobacteria may play a role in cyanobacterial physiology and bloom development. IMPORTANCE Interactions between heterotrophic bacteria and phytoplankton influence competition and successions between phytoplankton taxa, thereby influencing ecosystem-wide processes such as carbon cycling and algal bloom development. The cyanobacterium Microcystis forms harmful blooms in freshwaters worldwide and grows in buoyant colonies that harbor other bacteria in their phycospheres. Bacteria in the phycosphere and in the surrounding community likely influence Microcystis physiology and ecology and thus the development of freshwater harmful cyanobacterial blooms. However, the impacts and mechanisms of interaction between bacteria and Microcystis are not fully understood. This study explores the mechanisms of interaction between Microcystis and uncultured members of its phycosphere in situ with population genome resolution to investigate the cooccurrence of Microcystis and freshwater Acidobacteria in blooms worldwide. 
    more » « less
  5. Summary Interactions between bacteria and phytoplankton in the phycosphere have impacts at the scale of whole ecosystems, including the development of harmful algal blooms. The cyanobacteriumMicrocystiscauses toxic blooms that threaten freshwater ecosystems and human health globally.Microcystisgrows in colonies that harbour dense assemblages of other bacteria, yet the taxonomic composition of these phycosphere communities and the nature of their interactions withMicrocystisare not well characterized. To identify the taxa and compositional variance withinMicrocystisphycosphere communities, we performed 16S rRNA V4 region amplicon sequencing on individualMicrocystiscolonies collected biweekly via high‐throughput droplet encapsulation during a western Lake Erie cyanobacterial bloom. TheMicrocystisphycosphere communities were distinct from microbial communities in whole water and bulk phytoplankton seston in western Lake Erie but lacked ‘core’ taxa found across all colonies. However, dissimilarity in phycosphere community composition correlated with sampling date and theMicrocystis16S rRNA oligotype. Several taxa in the phycosphere were specific to and conserved withMicrocystisof a single oligotype or sampling date. Together, this suggests that physiological differences betweenMicrocystisstrains, temporal changes in strain phenotypes, and the composition of seeding communities may impact community composition of theMicrocystisphycosphere. 
    more » « less