skip to main content


Title: Silicate as a Versatile Matrix for the Aqueous Synthesis of Metal Sulfide Nanoparticles
Abstract

The addition of metals to the oligomeric sodium metasilicate in water results in insoluble metal silicate complexes that form nanoparticles, in which further chemical reactions can be carried out. Copper sulfide, copper tin sulfide, tin sulfide, bismuth sulfide and zinc sulfide doped with manganese nanoparticles were synthesized using this method. The silicate matrix resulted in a narrow particle size distribution and imparted long‐term stability to the nanoparticle suspensions. The reactions were monitored via UV‐Vis‐NIR spectroscopy, and the nanoparticles were characterized by AFM, powder X‐ray diffraction, and Raman spectroscopy. The described method is expected to become a general and versatile approach for aqueous synthesis of multimetallic, doped chalcogenide and other complex nanoparticles without the need of complicated chemical precursors, stabilizing agents, and multiple steps.

 
more » « less
NSF-PAR ID:
10366594
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry–Methods
Volume:
2
Issue:
4
ISSN:
2628-9725
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Copper-antimony-sulfide compounds have desirable earth-abundant compositions for application in renewable energy technologies, such as solar energy and waste heat recycling. These compounds can be synthesized by bottom-up, solution-phase techniques that are more energy and time efficient than conventional solid-state methods. Solution-phase methods typically produce nanostructured materials, which adds another dimension to control optical, electrical, and thermal material properties. This study focuses on a modified-polyol, solution-phase synthesis for tetrahedrite (Cu 12 Sb 4 S 13 ), a promising thermoelectric material with potential also for photovoltaic applications. To dope the tetrahedrite and tune material properties, the utility of the modified polyol synthetic approach has been demonstrated as a strategy to produce phase-pure tetrahedrite that incorporates transition metal (Fe, Co, Ni, Zn, Ag) dopants for Cu, Te dopant for Sb, and Se for S. Six of these reported tetrahedrite compounds have not previously been made by solution-phase methods. For the bottom-up formation of the tetrahedrite nanomaterials, the evolution of the chemical phases has been determined by an investigation of the reaction progress as a function of temperature and time. Digenite (Cu 1.8 S), covellite (CuS), and famatinite (Cu 3 SbS 4 ) are identified as key intermediates and are consistently observed for both undoped and doped tetrahedrites. The effect of nanostructuring and doping tetrahedrite on thermal properties has been investigated. It was found that nanostructured undoped tetrahedrite has reduced thermal stability relative to samples made by solid-state methods, while the addition of dopants for Cu increased the thermal stability of the material. Crystallinity, composition, and nanostructure of products and intermediates were characterized by powder X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy, and transmission electron microscopy. Thermal properties were investigated by differential scanning calorimetry and thermal gravimetric analysis. This synthetic study with thermal property analysis demonstrates the potential of the modified polyol method to produce tetrahedrite and other copper-antimony-sulfide compounds for thermoelectric and photovoltaic applications. 
    more » « less
  2. null (Ed.)
    Redox-switchable polymerizations of lactide and epoxides were extended to the solid state by anchoring an iron-based polymerization catalyst to TiO 2 nanoparticles. The reactivity of the molecular complexes and their redox-switching characteristics were maintained in the solid-state. These properties resulted in surface-initiated polymerization reactions that produced polymer brushes whose chemical composition is dictated by the oxidation state of the iron-based complex. Depositing the catalyst-functionalized TiO 2 nanoparticles on fluorine-doped tin oxide resulted in an electrically addressable surface that could be used to demonstrate spatial control in redox-switchable polymerization reactions. By using a substrate that contained two electrically isolated domains wherein one domain was exposed to an oxidizing potential, patterns of surface-bound polyesters and polyethers were accessible through sequential application of lactide and cyclohexene oxide. The differentially functionalized surfaces demonstrated distinct physical properties that illustrated the promise for using the method to pattern surfaces with multiple, chemically distinct polymer brushes. 
    more » « less
  3. Nickel-palladium bimetallic nanoparticles supported on multi-walled carbon nanotubes (Ni-Pd/MWCNTs) were prepared by dry mixing of the nickel and palladium salts using the mechanical energy of a ball-mill. These nanoparticles demonstrated remarkable catalytic activity in Sonogashira cross-coupling reactions with a wide range of functionalized aryl halides and terminal alkynes under ligand and copper free conditions using Monowave 50 heating reactor. The catalyst is air-stable and can be easily removed from the reaction mixture by centrifugation and reused several times with minimal loss of catalytic activity. Furthermore, the concentration of catalyst in Sonogashira reactions can be lowered to a minimum amount of 0.01 mol%while still providing a high conversion of the Sonogashira product with an excellent turnover number (TON) of 7200 and turnover frequency (TOF) of 21600 h. The Ni-Pd/MWCNTs nanoparticles were fully characterized by a variety of spectroscopic techniques including X-ray diffraction (XRD), transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy (XPS). The remarkable reactivity of the Ni-Pd/MWCNTs catalyst toward Sonogashira cross-coupling reactions is attributed to the high degree of the dispersion of Ni-Pdnanoparticles with small particle size of 5-10 nm due to an efficient grinding method. This work provides a facile, solventless and inexpensive method for large-scale preparation of Ni-Pd/MWCNTs to accomplish often-challenging Sonogashira cross coupling reactions. 
    more » « less
  4. Nickel-palladium bimetallic nanoparticles supported on multi-walled carbon nanotubes (Ni-Pd/MWCNTs) were prepared by dry mixing of the nickel and palladium salts using the mechanical energy of a ball-mill. These nanoparticles demonstrated remarkable catalytic activity in Sonogashira cross-coupling reactions with a wide range of functionalized aryl halides and terminal alkynes under ligand and copper free conditions using Monowave 50 heating reactor. The catalyst is air-stable and can be easily removed from the reaction mixture by centrifugation and reused several times with minimal loss of catalytic activity. Furthermore, the concentration of catalyst in Sonogashira reactions can be lowered to a minimum amount of 0.01 mol%while still providing a high conversion of the Sonogashira product with an excellent turnover number (TON) of 7200 and turnover frequency (TOF) of 21600 h. The Ni-Pd/MWCNTs nanoparticles were fully characterized by a variety of spectroscopic techniques including X-ray diffraction (XRD), transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy (XPS). The remarkable reactivity of the Ni-Pd/MWCNTs catalyst toward Sonogashira cross-coupling reactions is attributed to the high degree of the dispersion of Ni-Pdnanoparticles with small particle size of 5-10 nm due to an efficient grinding method. This work provides a facile, solventless and inexpensive method for large-scale preparation of Ni-Pd/MWCNTs to accomplish often-challenging Sonogashira cross-coupling reactions. 
    more » « less
  5. We have developed an efficient method to generate highly active nickel–palladium bimetallic nanoparticles supported on multi-walled carbon nanotubes (Ni–Pd/MWCNTs) by dry mixing of the nickel and palladium salts utilizing the mechanical energy of a ball-mill. These nanoparticles were successfully employed in Sonogashira cross-coupling reactions with a wide array of functionalized aryl halides and terminal alkynes under ligand and copper free conditions using a Monowave 50 heating reactor. Notably, the concentration of palladium can be lowered to a minimum amount of 0.81% and replaced by more abundant and less expensive nickel nanoparticles while effectively catalyzing the reaction. The remarkable reactivity of the Ni–Pd/MWCNTs catalyst toward Sonogashira cross-coupling reactions is attributed to the high degree of the dispersion of Ni–Pd nanoparticles with small particle size of 5–10 nm due to an efficient grinding method. The catalyst was easily removed from the reaction mixture by centrifugation and reused several times with minimal loss of catalytic activity. Furthermore, the concentration of catalyst in Sonogashira reactions can be reduced to a minimum amount of 0.01 mol% while still providing a high conversion of the Sonogashira product with a remarkable turnover number (TON) of 7200 and turnover frequency (TOF) of 21 600 h −1 . The catalyst was fully characterized by a variety of spectroscopic techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). 
    more » « less