skip to main content


Title: The Importance of Surface Oxygen for Lithiation and Morphology Evolution during Calcination of High‐Nickel NMC Cathodes
Abstract

Nanoscale morphology has a direct impact on the performance of materials for electrochemical energy storage. Despite this importance, little is known about the evolution of primary particle morphology nor its effect on chemical pathways during synthesis. In this study, operando characterization is combined with atomic‐scale and continuum simulations to clarify the relationship between morphology of cathode primary particles and their lithiation during calcination of LiNi0.8Mn0.1Co0.1O2(NMC‐811). This combined approach reveals a key role for surface oxygen adsorption in facilitating the lithiation reaction by promoting metal diffusion and oxidation, and simultaneously providing surface sites for lithium insertion. Furthermore, oxygen surface termination is shown to increase the activation energy for sintering, leading to smaller primary particle sizes at intermediate temperatures. Smaller particles provide both shorter diffusion lengths for lithium incorporation and increased surface site density for lithium insertion. These insights provide a foundation for more tailored syntheses of cathode materials with optimized performance characteristics.

 
more » « less
NSF-PAR ID:
10366615
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
12
Issue:
16
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    While lithium ion batteries with electrodes based on intercalation compounds have dominated the portable energy storage market for decades, the energy density of these materials is fundamentally limited. Today, rapidly growing demand for this type of energy storage is driving research into materials that utilize alternative reaction mechanisms to enable higher energy densities. Transition metal compounds are one such class of materials, with storage enabled by “conversion” reactions, where the material is converted to new compound upon lithiation. MoS2is one example of this type of material that has generated a large amount of interest recently due to its high theoretical lithium storage capacity compared to graphite. Here, cryogenic scanning transmission electron microscopy techniques are used to reveal the atomic‐scale processes that occur during reaction of a model monolayer MoS2system by enabling the unaltered atomic structure to be determined at various levels of lithiation. It is revealed that monolayer MoS2can undergo a conversion reaction even with no substrate, and that the resulting particles are smaller than those that form in bulk MoS2, likely due to the more limited 2D diffusion. Additionally, while bilayer MoS2undergoes intercalation with a corresponding phase transition before conversion, monolayer MoS2does not.

     
    more » « less
  2. Abstract

    Mn‐redox‐based oxides and oxyfluorides are considered the most promising earth‐abundant high‐energy cathode materials for next‐generation lithium‐ion batteries. While high capacities are obtained in high‐Mn content cathodes such as Li‐ and Mn‐rich layered and spinel‐type materials, local structure changes and structural distortions ( often lead to voltage fade, capacity decay, and impedance rise, resulting in unacceptable electrochemical performance upon cycling. In the present study, structural transformations that exploit the high capacity of Mn‐rich oxyfluorides while enabling stable cycling, in stark contrast to commonly observed structural changes that result in rapid performance degradation, are reported. It is shown that upon cycling of a cation‐disordered rocksalt (DRX) cathode (Li1.1Mn0.8Ti0.1O1.9F0.1, an ultrahigh capacity of ≈320 mAh g−1(energy density of ≈900 Wh kg−1) can be obtained through dynamic structural rearrangements upon cycling , along with a unique voltage profile evolution and capacity rise. At high voltage, the presence of Mn4+and Li+vacancies promotes local cation ordering, leading to the formation of domains of a “δphase” within the disordered framework. On deep discharge, Mn4+reduction, along with Li+insertion transform the structure to a partially ordered DRX phase with aβ′‐LiFeO2‐type arrangement. At the nanoscale, domains of the in situ formed phases are randomly oriented, allowing highly reversible structural changes and stable electrochemical cycling. These new insights not only help explain the superior electrochemical performance of high‐Mn DRXbut also provide guidance for the future development of Mn‐based, high‐energy density oxide, and oxyfluoride cathode materials.

     
    more » « less
  3. Abstract

    Ni‐rich LiNi0.8Co0.1Mn0.1O2(NCM811) has been considered as a promising cathode material for high energy density lithium‐ion batteries. However, it experiences undesirable interfacial side‐reactions with the electrolyte, which lead to a rapid capacity decay. In this work, a homogeneous precipitation method is proposed for forming a uniform silicon dioxide (SiO2) coating on the NCM811 surface. The strong Si−O network provided a stable protective layer between the NCM811 active material and electrolyte to improve the electrochemical stability. As a result, the NCM811@SiO2cathode showed superior cycling stability (84.9 % after 100 cycles at 0.2 C) and rate capability (142.7 mA h g−1at 5 C) compared to the pristine NCM811 cathode (56.6 % after 100 cycles, 127.9 mA h g−1at 5 C). Moreover, the SiO2coating effectively suppressed voltage decay and pulverization of the NCM811 particles during long term cycling. This uniform coating technique offers a viable approach for stabilizing Ni‐rich cathode materials for high‐energy density lithium‐ion batteries.

     
    more » « less
  4. Abstract

    Lithium/fluorinated graphite (Li/CFx) primary batteries show great promise for applications in a wide range of energy storage systems due to their high energy density (>2100 Wh kg–1) and low self‐discharge rate (<0.5% per year at 25 °C). While the electrochemical performance of the CFxcathode is indeed promising, the discharge reaction mechanism is not thoroughly understood to date. In this article, a multiscale investigation of the CFxdischarge mechanism is performed using a novel cathode structure to minimize the carbon and fluorine additives for precise cathode characterizations. Titration gas chromatography, X‐ray diffraction, Raman spectroscopy, X‐ray photoelectron spectroscopy, scanning electron microscopy, cross‐sectional focused ion beam, high‐resolution transmission electron microscopy, and scanning transmission electron microscopy with electron energy loss spectroscopy are utilized to investigate this system. Results show no metallic lithium deposition or intercalation during the discharge reaction. Crystalline lithium fluoride particles uniformly distributed with <10 nm sizes into the CFxlayers, and carbon with lower sp2content similar to the hard‐carbon structure are the products during discharge. This work deepens the understanding of CFxas a high energy density cathode material and highlights the need for future investigations on primary battery materials to advance performance.

     
    more » « less
  5. Silicon as a promising candidate for the next-generation high-capacity lithium-ion battery anode is characterized by outstanding capacity, high abundance, low operational voltage, and environmental benignity. However, large volume changes during Si lithiation and de-lithiation can seriously impair its long-term cyclability. Although extensive research efforts have been made to improve the electrochemical performance of Si-based anodes, there is a lack of efficient fabrication methods that are low cost, scalable, and self-assembled. In this report, co-axial fibrous silicon asymmetric membrane has been synthesized using a scalable and straightforward phase inversion method combined with dip coating as inspired by the hollow fiber membrane technology that has been successfully commercialized over the last decades to provide billions of gallons of purified drinking water worldwide. We demonstrate that ~ 90% initial capacity of co-axial fibrous Si asymmetric membrane electrode can be maintained after 300 cycles applying a current density of 400 mA g−1. The diameter of fibers, size of silicon particles, type of polymers, and exterior coating have been identified as critical factors that can influence the electrode stability, initial capacity, and rate performance. Much enhanced electrochemical performance can be harvested from a sample that has thinner fiber diameter, smaller silicon particle, lower silicon content, and porous carbon coating. This efficient and scalable approach to prepare high-capacity silicon-based anode with outstanding cyclability is fully compatible with industrial roll-to-roll processing technology, thus bearing a great potential for its future commercialization. 
    more » « less