skip to main content


Title: Untangling the complexity of priority effects in multispecies communities
Abstract

The history of species immigration can dictate how species interact in local communities, thereby causing historical contingency in community assembly. Since immigration history is rarely known, these historical influences, or priority effects, pose a major challenge in predicting community assembly. Here, we provide a graph‐based, non‐parametric, theoretical framework for understanding the predictability of community assembly as affected by priority effects. To develop this framework, we first show that the diversity of possible priority effects increases super‐exponentially with the number of species. We then point out that, despite this diversity, the consequences of priority effects for multispecies communities can be classified into four basic types, each of which reduces community predictability: alternative stable states, alternative transient paths, compositional cycles and the lack of escapes from compositional cycles to stable states. Using a neural network, we show that this classification of priority effects enables accurate explanation of community predictability, particularly when each species immigrates repeatedly. We also demonstrate the empirical utility of our theoretical framework by applying it to two experimentally derived assembly graphs of algal and ciliate communities. Based on these analyses, we discuss how the framework proposed here can help guide experimental investigation of the predictability of history‐dependent community assembly.

 
more » « less
Award ID(s):
2024349
NSF-PAR ID:
10366621
Author(s) / Creator(s):
 ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
24
Issue:
11
ISSN:
1461-023X
Page Range / eLocation ID:
p. 2301-2313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Mountains provide uniquely informative systems for examining how biodiversity is distributed and identifying the causes of those patterns. Elevational patterns of species richness are well‐documented for many taxa but comparatively few studies have investigated patterns in multiple dimensions of biodiversity along mountainsides, which can reveal the underlying processes at play. Here, we use trait‐based diversity patterns to determine the role of abiotic filters and competition in the assembly of communities of small mammals across elevation and evaluate the surrogacy of taxonomic, functional, and phylogenetic dimensions of diversity.

    Location

    Great Basin ecoregion, western North America.

    Taxon

    Rodents and shrews.

    Methods

    The elevational distributions of 34 species were determined from comprehensive field surveys conducted in three arid, temperate mountain ranges. Elevation–diversity relationships and community assembly processes were inferred from phylogenetic (PD) and functional diversity (FD) patterns of mean pairwise and mean nearest‐neighbor distances while accounting for differences in species richness. FD indices were calculated separately for traits related to either abiotic filtering (β‐niche traits) or biotic interactions (α‐niche traits) to test explicit predictions of the role of each across elevation.

    Results

    Trait‐based tests of processes indicated that abiotic filtering tied to a strong aridity gradient drives the assembly of both low‐ and high‐elevation communities. Support for competition was not consistent with theoretical expectations under the stress‐dominance hypothesis, species interactions‐abiotic stress hypothesis, or guild assembly rule. Mid‐elevation peaks in species richness contrasted with overall FD and PD, which generally increased with elevation. PD and total FD were correlated on two of three mountains.

    Main conclusions

    The functional diversity of small mammal communities in these arid, temperate mountains is most consistent with abiotic filters, whereas support for competition is weak. Decomposing FD into traits related to separate assembly processes and examining ecoregional variation in diversity were critical for uncovering the generality of mechanisms. Divergent patterns among dimensions revealed species richness to be a poor surrogate for PD and FD across elevation and reflect the effect of biogeographic and evolutionary history. This first analysis of elevational multidimensional diversity gradients for temperate mammals provides a versatile framework for future comparative studies.

     
    more » « less
  2. The emergence of an ecological community in evolutionary time is the result of species evolution and coevolution. In species rich and functionally diverse communities, there are a multitude of alternative pathways along which emergence could proceed. Nevertheless, analysis of alternative pathways for paleocommunities spanning more than 13 million years of the Permian-Triassic of the Karoo Basin of South Africa, suggests that pathways actually taken represent a small subset of the total available. This leads to a narrow representation of the total number of communities possible given a specific number of species and level of functional diversity. Furthermore, the paleocommunities were always superior to structural alternatives of equal complexity, in terms of community global stability (the number of species that can coexist stably and indefinitely). Such optimization could indicate a selective process during the formation of types of communities, or simply be emergent from the coevolutionary framework. Here we present ongoing work to support an emergent process by which many alternative types of communities may form constantly on ecological timescales, but where few are stable and persistent on longer timescales. This leads to the compositional stability of paleoecological units often noted in the fossil record, and the apparent incumbency of long-lasting lineages. The aftermath of mass extinctions present opportunities to test this hypothesis, because previously persistent communities are replaced by newly emergent ones, and the emergence process itself can be extended to geological timescales because of ongoing environmental instability, and the time required for the reformation of coevolutionary relationships and functional structures. Such is the case in the aftermath of the Permian-Triassic mass extinction, when Early Triassic paleocommunities in the Karoo Basin were sub-optimal compared to alternative, hypothetical histories. Understanding long-term ecological persistence is crucial to our understanding of the modern anthropogenically-driven environmental crisis. Modern ecosystems are the documented products of geological and evolutionary history. Species acclimatization and adaptation to ongoing changes are not necessarily guarantees of the future persistence of the resulting reorganized systems. It will become critical to determine if the biosphere has already turned down new ecological and evolutionary pathways, or is still operating in the capacity of the pre-Anthropocene system. 
    more » « less
  3. Abstract

    Disturbance is a key factor shaping ecological communities, but little is understood about how the effects of disturbance processes accumulate over time. When disturbance regimes change, historical processes may influence future community structure, for example, by altering invasibility compared to communities with stable regimes. Here, we use an annual plant model to investigate how the history of disturbance alters invasion success. In particular, we show how two communities can have different outcomes from species introduction, solely due to past differences in disturbance regimes that generated different biotic legacies. We demonstrate that historical differences can enhance or suppress the persistence of introduced species, and that biotic legacies generated by stable disturbance history decay over time, though legacies can persist for unexpectedly long durations. This establishes a formal theoretical foundation for disturbance legacies having profound effects on communities, and highlights the value of further research on the biotic legacies of disturbance.

     
    more » « less
  4. Priority effects, where arrival order and initial relative abundance modulate local species interactions, can exert taxonomic, functional, and evolutionary influences on ecological communities by driving them to alternative states. It remains unclear if these wide-ranging consequences of priority effects can be explained systematically by a common underlying factor. Here, we identify such a factor in an empirical system. In a series of field and laboratory studies, we focus on how pH affects nectar-colonizing microbes and their interactions with plants and pollinators. In a field survey, we found that nectar microbial communities in a hummingbird-pollinated shrub, Diplacus (formerly Mimulus ) aurantiacus , exhibited abundance patterns indicative of alternative stable states that emerge through domination by either bacteria or yeasts within individual flowers. In addition, nectar pH varied among D. aurantiacus flowers in a manner that is consistent with the existence of these alternative stable states. In laboratory experiments, Acinetobacter nectaris , the bacterium most commonly found in D. aurantiacus nectar, exerted a strongly negative priority effect against Metschnikowia reukaufii , the most common nectar-specialist yeast, by reducing nectar pH. This priority effect likely explains the mutually exclusive pattern of dominance found in the field survey. Furthermore, experimental evolution simulating hummingbird-assisted dispersal between flowers revealed that M. reukaufii could evolve rapidly to improve resistance against the priority effect if constantly exposed to A. nectaris -induced pH reduction. Finally, in a field experiment, we found that low nectar pH could reduce nectar consumption by hummingbirds, suggesting functional consequences of the pH-driven priority effect for plant reproduction. Taken together, these results show that it is possible to identify an overarching factor that governs the eco-evolutionary dynamics of priority effects across multiple levels of biological organization. 
    more » « less
  5. In human populations, the relative levels of neutral diversity on the X and autosomes differ markedly from each other and from the naïve theoretical expectation of 3/4. Here we propose an explanation for these differences based on new theory about the effects of sex-specific life history and given pedigree-based estimates of the dependence of human mutation rates on sex and age. We demonstrate that life history effects, particularly longer generation times in males than in females, are expected to have had multiple effects on human X-to-autosome (X:A) diversity ratios, as a result of male-biased mutation rates, the equilibrium X:A ratio of effective population sizes, and the differential responses to changes in population size. We also show that the standard approach of using divergence between species to correct for male mutation bias results in biased estimates of X:A effective population size ratios. We obtain alternative estimates using pedigree-based estimates of the male mutation bias, which reveal that X:A ratios of effective population sizes are considerably greater than previously appreciated. Finally, we find that the joint effects of historical changes in life history and population size can explain the observed X:A diversity ratios in extant human populations. Our results suggest that ancestral human populations were highly polygynous, that non-African populations experienced a substantial reduction in polygyny and/or increase in the male-to-female ratio of generation times around the Out-of-Africa bottleneck, and that current diversity levels were affected by fairly recent changes in sex-specific life history.

     
    more » « less