Abstract The t-distributed stochastic neighbor embedding (t-SNE) method is one of the leading techniques for data visualization and clustering. This method finds lower-dimensional embedding of data points while minimizing distortions in distances between neighboring data points. By construction, t-SNE discards information about large-scale structure of the data. We show that adding a global cost function to the t-SNE cost function makes it possible to cluster the data while preserving global intercluster data structure. We test the new global t-SNE (g-SNE) method on one synthetic and two real data sets on flower shapes and human brain cells. We find that significant and meaningful global structure exists in both the plant and human brain data sets. In all cases, g-SNE outperforms t-SNE and UMAP in preserving the global structure. Topological analysis of the clustering result makes it possible to find an appropriate trade-off of data distribution across scales. We find differences in how data are distributed across scales between the two subjects that were part of the human brain data set. Thus, by striving to produce both accurate clustering and positioning between clusters, the g-SNE method can identify new aspects of data organization across scales.
more »
« less
Supervised capacity preserving mapping: a clustering guided visualization method for scRNA-seq data
Abstract MotivationThe rapid development of scRNA-seq technologies enables us to explore the transcriptome at the cell level on a large scale. Recently, various computational methods have been developed to analyze the scRNAseq data, such as clustering and visualization. However, current visualization methods, including t-SNE and UMAP, are challenged by the limited accuracy of rendering the geometric relationship of populations with distinct functional states. Most visualization methods are unsupervised, leaving out information from the clustering results or given labels. This leads to the inaccurate depiction of the distances between the bona fide functional states. In particular, UMAP and t-SNE are not optimal to preserve the global geometric structure. They may result in a contradiction that clusters with near distance in the embedded dimensions are in fact further away in the original dimensions. Besides, UMAP and t-SNE cannot track the variance of clusters. Through the embedding of t-SNE and UMAP, the variance of a cluster is not only associated with the true variance but also is proportional to the sample size. ResultsWe present supCPM, a robust supervised visualization method, which separates different clusters, preserves the global structure and tracks the cluster variance. Compared with six visualization methods using synthetic and real datasets, supCPM shows improved performance than other methods in preserving the global geometric structure and data variance. Overall, supCPM provides an enhanced visualization pipeline to assist the interpretation of functional transition and accurately depict population segregation. Availability and implementationThe R package and source code are available at https://zenodo.org/record/5975977#.YgqR1PXMJjM. Supplementary informationSupplementary data are available at Bioinformatics online.
more »
« less
- Award ID(s):
- 2107215
- PAR ID:
- 10366634
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Bioinformatics
- Volume:
- 38
- Issue:
- 9
- ISSN:
- 1367-4803
- Format(s):
- Medium: X Size: p. 2496-2503
- Size(s):
- p. 2496-2503
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Two-dimensional (2D) embedding methods are crucial for single-cell data visualization. Popular methods such as t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) are commonly used for visualizing cell clusters; however, it is well known that t-SNE and UMAP’s 2D embeddings might not reliably inform the similarities among cell clusters. Motivated by this challenge, we present a statistical method, scDEED, for detecting dubious cell embeddings output by a 2D-embedding method. By calculating a reliability score for every cell embedding based on the similarity between the cell’s 2D-embedding neighbors and pre-embedding neighbors, scDEED identifies the cell embeddings with low reliability scores as dubious and those with high reliability scores as trustworthy. Moreover, by minimizing the number of dubious cell embeddings, scDEED provides intuitive guidance for optimizing the hyperparameters of an embedding method. We show the effectiveness of scDEED on multiple datasets for detecting dubious cell embeddings and optimizing the hyperparameters of t-SNE and UMAP.more » « less
-
Abstract MotivationCancer phylogenies are key to studying tumorigenesis and have clinical implications. Due to the heterogeneous nature of cancer and limitations in current sequencing technology, current cancer phylogeny inference methods identify a large solution space of plausible phylogenies. To facilitate further downstream analyses, methods that accurately summarize such a set T of cancer phylogenies are imperative. However, current summary methods are limited to a single consensus tree or graph and may miss important topological features that are present in different subsets of candidate trees. ResultsWe introduce the Multiple Consensus Tree (MCT) problem to simultaneously cluster T and infer a consensus tree for each cluster. We show that MCT is NP-hard, and present an exact algorithm based on mixed integer linear programming (MILP). In addition, we introduce a heuristic algorithm that efficiently identifies high-quality consensus trees, recovering all optimal solutions identified by the MILP in simulated data at a fraction of the time. We demonstrate the applicability of our methods on both simulated and real data, showing that our approach selects the number of clusters depending on the complexity of the solution space T. Availability and implementationhttps://github.com/elkebir-group/MCT. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
Abstract In hydrology, a fundamental task involves enhancing the predictive power of a model in ungagged basins by transferring information on physical attributes and hydroclimate dynamics from gauged basins. Introducing an integrated nonlinear clustering framework, this study aims to develop a comprehensive framework that augments predictive performance in basins where direct measurements are sparse or absent. In this framework, uniform manifold approximation and projection (UMAP) is used as a nonlinear method to extract the essential features embedded in hydro‐climatological attributes and physical properties. Then, the Growing Neural Gas (GNG) clustering model is used to find the basins that potentially share similar hydro‐climatological behaviors. Besides UMAP‐GNG, the integration of Principal Component Analysis (PCA) as a linear method to reduce dimensionality with common clustering methods are also assessed to serve as benchmarks. The results reveal that the combination of clustering algorithms with the PCA method may lead to loss of information while the nonlinear method (UMAP) can extract more informative features. The efficacy of the proposed framework is assessed across the Contiguous United States (CONUS) by training a single Base Model using long short‐term memory (LSTM) for the centroids of all clusters and then, fine‐tuning the model on the centroids of each cluster separately to create a regional model. The results indicate that using the information extracted by the UMAP‐GNG method to guide a Base Model can significantly improve the accuracy in most of the clusters and enhance the median prediction accuracy within different clusters from 0.04 to 0.37 of KGE in ungauged basins.more » « less
-
Abstract Discovery of target‐binding molecules, such as aptamers and peptides, is usually performed with the use of high‐throughput experimental screening methods. These methods typically generate large datasets of sequences of target‐binding molecules, which can be enriched with high affinity binders. However, the identification of the highest affinity binders from these large datasets often requires additional low‐throughput experiments or other approaches. Bioinformatics‐based analyses could be helpful to better understand these large datasets and identify the parts of the sequence space enriched with high affinity binders.BinderSpaceis an open‐source Python package that performs motif analysis, sequence space visualization, clustering analyses, and sequence extraction from clusters of interest. The motif analysis, resulting in text‐based and visual output of motifs, can also provide heat maps of previously measured user‐defined functional properties for all the motif‐containing molecules. Users can also run principal component analysis (PCA) and t‐distributed stochastic neighbor embedding (t‐SNE) analyses on whole datasets and on motif‐related subsets of the data. Functionally important sequences can also be highlighted in the resulting PCA and t‐SNE maps. If points (sequences) in two‐dimensional maps in PCA or t‐SNE space form clusters, users can perform clustering analyses on their data, and extract sequences from clusters of interest. We demonstrate the use ofBinderSpaceon a dataset of oligonucleotides binding to single‐wall carbon nanotubes in the presence and absence of a bioanalyte, and on a dataset of cyclic peptidomimetics binding to bovine carbonic anhydrase protein.BinderSpaceis openly accessible to the public via the GitHub website:https://github.com/vukoviclab/BinderSpace.more » « less
An official website of the United States government
