skip to main content


Title: CHANG-ES XXV: H  i imaging of nearby edge-on galaxies – Data Release 4
ABSTRACT

We present the ${\rm H}\, {\small I}$ distribution of galaxies from the Continuum Haloes in Nearby Galaxies – an EVLA Survey (CHANG-ES). Though the observational mode was not optimized for detecting ${\rm H}\, {\small I}$, we successfully produce ${\rm H}\, {\small I}$ cubes for 19 galaxies. The moment-0 maps from this work are available on CHANG-ES data release website (i.e. https://www.queensu.ca/changes). Our sample is dominated by star-forming, ${\rm H}\, {\small I}$-rich galaxies at distances from 6.27 to 34.1 Mpc. ${\rm H}\, {\small I}$ interferometric images on two of these galaxies (NGC 5792 and UGC 10288) are presented here for the first time, while 12 of our remaining sample galaxies now have better ${\rm H}\, {\small I}$ spatial resolutions and/or sensitivities of intensity maps than those in existing publications. We characterize the average scale heights of the ${\rm H}\, {\small I}$ distributions for a subset of most inclined galaxies (inclination > 80 deg), and compare them to the radio continuum intensity scale heights, which have been derived in a similar way. The two types of scale heights are well correlated, with similar dependence on disc radial extension and star formation rate surface density but different dependence on mass surface density. This result indicates that the vertical distribution of the two components may be governed by similar fundamental physics but with subtle differences.

 
more » « less
NSF-PAR ID:
10366669
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
513
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 1329-1353
Size(s):
["p. 1329-1353"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present the joint analysis of Neutral Hydrogen (H i) Intensity Mapping observations with three galaxy samples: the Luminous Red Galaxy (LRG) and Emission Line Galaxy (ELG) samples from the eBOSS survey, and the WiggleZ Dark Energy Survey sample. The H i intensity maps are Green Bank Telescope observations of the redshifted $21\rm cm$ emission on $100 \, {\rm deg}^2$ covering the redshift range 0.6 < z < 1.0. We process the data by separating and removing the foregrounds present in the radio frequencies with FastI ICA. We verify the quality of the foreground separation with mock realizations, and construct a transfer function to correct for the effects of foreground removal on the H i signal. We cross-correlate the cleaned H i data with the galaxy samples and study the overall amplitude as well as the scale dependence of the power spectrum. We also qualitatively compare our findings with the predictions by a semianalytical galaxy evolution simulation. The cross-correlations constrain the quantity $\Omega _{\rm {H\,\small {I}}} b_{\rm {H\,\small {I}}} r_{\rm {H\,\small {I}},{\rm opt}}$ at an effective scale keff, where $\Omega _\rm {H\,\small {I}}$ is the H  i density fraction, $b_\rm {H\,\small {I}}$ is the H i bias, and $r_{\rm {H\,\small {I}},{\rm opt}}$ the galaxy–hydrogen correlation coefficient, which is dependent on the H  i content of the optical galaxy sample. At $k_{\rm eff}=0.31 \, h\,{\rm Mpc^{-1}}$ we find $\Omega _{\rm {H\,\small {I}}} b_{\rm {H\,\small {I}}} r_{\rm {H\,\small {I}},{\rm Wig}} = [0.58 \pm 0.09 \, {\rm (stat) \pm 0.05 \, {\rm (sys)}}] \times 10^{-3}$ for GBT-WiggleZ, $\Omega _{\rm {H\,\small {I}}} b_{\rm {H\,\small {I}}} r_{\rm {H\,\small {I}},{\rm ELG}} = [0.40 \pm 0.09 \, {\rm (stat) \pm 0.04 \, {\rm (sys)}}] \times 10^{-3}$ for GBT-ELG, and $\Omega _{\rm {H\,\small {I}}} b_{\rm {H\,\small {I}}} r_{\rm {H\,\small {I}},{\rm LRG}} = [0.35 \pm 0.08 \, {\rm (stat) \pm 0.03 \, {\rm (sys)}}] \times 10^{-3}$ for GBT-LRG, at z ≃ 0.8. We also report results at $k_{\rm eff}=0.24$ and $k_{\rm eff}=0.48 \, h\,{\rm Mpc^{-1}}$. With little information on H i parameters beyond our local Universe, these are amongst the most precise constraints on neutral hydrogen density fluctuations in an underexplored redshift range. 
    more » « less
  2. ABSTRACT Understanding the spatial distribution of metals within galaxies allows us to study the processes of chemical enrichment and mixing in the interstellar medium. In this work, we map the 2D distribution of metals using a Gaussian Process Regression (GPR) for 19 star-forming galaxies observed with the Very Large Telescope/Multi Unit Spectroscopic Explorer (VLT–MUSE) as a part of the PHANGS–MUSE survey. We find that 12 of our 19 galaxies show significant 2D metallicity variation. Those without significant variations typically have fewer metallicity measurements, indicating this is due to the dearth of ${\rm H\, {\small II}}$ regions in these galaxies, rather than a lack of higher-order variation. After subtracting a linear radial gradient, we see no enrichment in the spiral arms versus the disc. We measure the 50 per cent correlation scale from the two-point correlation function of these radially subtracted maps, finding it to typically be an order of magnitude smaller than the fitted GPR kernel scale length. We study the dependence of the two-point correlation scale length with a number of global galaxy properties. We find no relationship between the 50 per cent correlation scale and the overall gas turbulence, in tension with existing theoretical models. We also find more actively star-forming galaxies, and earlier type galaxies have a larger 50 per cent correlation scale. The size and stellar mass surface density do not appear to correlate with the 50 per cent correlation scale, indicating that perhaps the evolutionary state of the galaxy and its current star formation activity is the strongest indicator of the homogeneity of the metal distribution. 
    more » « less
  3. ABSTRACT

    We investigate the origin of rare star formation in an otherwise red-and-dead population of S0 galaxies, using spatially resolved spectroscopy. Our sample consists of 120 low redshift (z < 0.1) star-forming S0 (SF-S0) galaxies from the SDSS-IV MaNGA DR15. We have selected this sample after a visual inspection of deep images from the DESI Legacy Imaging Surveys DR9 and the Subaru/HSC-SSP survey PDR3 to remove contamination from spiral galaxies. We also construct two control samples of star-forming spirals (SF-Sps) and quenched S0s (Q-S0s) to explore their evolutionary link with the star-forming S0s. To study star formation at resolved scales, we use dust-corrected H α luminosity and stellar density (Σ⋆) maps to construct radial profiles of star formation rate (SFR) surface density (ΣSFR) and specific SFR (sSFR). Examining these radial profiles, we find that star formation in SF-S0s is centrally dominated as opposed to disc-dominated star formation in spirals. We also compared various global (size–mass relation, bulge-to-total luminosity ratio) and local (central stellar velocity dispersion) properties of SF-S0s to those of the control sample galaxies. We find that SF-S0s are structurally similar to the quenched S0s and are different from star-forming spirals. We infer that SF-S0s are unlikely to be fading spirals. Inspecting stellar and gas velocity maps, we find that more than $50{{\ \rm per\ cent}}$ of the SF-S0 sample shows signs of recent galaxy interactions such as kinematic misalignment, counter-rotation, and unsettled kinematics. Based on these results, we conclude that in our sample of SF-S0s, star formation has been rejuvenated, with minor mergers likely to be a major driver.

     
    more » « less
  4. ABSTRACT We present the second data release for the H i-MaNGA programme of H i follow-up observations for the SDSS-IV MaNGA survey. This release contains measurements for 3669 unique galaxies, combining 2108 Green Bank Telescope observations with an updated crossmatch of the MaNGA sample with the ALFALFA survey. We combine these data with MaNGA spectroscopic measurements to examine relationships between H i-to-stellar mass ratio (${\rm M_{H\, {\small I}}/{M_*}}$) and average ISM/star formation properties probed by optical emission lines. ${\rm M_{H\, {\small I}}/{M_*}}$ is very weakly correlated with the equivalent width of H α, implying a loose connection between the instantaneous star formation rate and the H i reservoir, although the link between ${\rm M_{H\, {\small I}}/{M_*}}$ and star formation strengthens when averaged even over only moderate time-scales (∼30 Myr). Galaxies with elevated H i depletion times have enhanced [O i]/H α and depressed H α surface brightness, consistent with more H i residing in a diffuse and/or shock-heated phase that is less capable of condensing into molecular clouds. Of all optical lines, ${\rm M_{H\, {\small I}}/{M_*}}$ correlates most strongly with oxygen equivalent width, EW(O), which is likely a result of the existing correlation between ${\rm M_{H\, {\small I}}/{M_*}}$ and gas-phase metallicity. Residuals in the ${\rm M_{H\, {\small I}}/{M_*}}$−EW(O) relation are again correlated with [O i]/H α and H α surface brightness, suggesting they are also driven by variations in the fraction of diffuse and/or shock-heated gas. We recover the strong anticorrelation between ${\rm M_{H\, {\small I}}/{M_*}}$ and gas-phase metallicity seen in previous studies. We also find a relationship between ${\rm M_{H\, {\small I}}/{M_*}}$ and [O i]6302/H α, suggesting that higher fractions of diffuse and/or shock-heated gas are more prevalent in gas-rich galaxies. 
    more » « less
  5. ABSTRACT

    We present 10 main-sequence ALPINE galaxies (log (M/M⊙) = 9.2−11.1 and ${\rm SFR}=23-190\, {\rm M_{\odot }\, yr^{-1}}$) at z ∼ 4.5 with optical [O ii] measurements from Keck/MOSFIRE spectroscopy and Subaru/MOIRCS narrow-band imaging. This is the largest such multiwavelength sample at these redshifts, combining various measurements in the ultraviolet, optical, and far-infrared including [C ii]158 $\mu$m line emission and dust continuum from ALMA and H α emission from Spitzer photometry. For the first time, this unique sample allows us to analyse the relation between [O ii] and total star-formation rate (SFR) and the interstellar medium (ISM) properties via [O ii]/[C ii] and [O ii]/H α luminosity ratios at z ∼ 4.5. The [O ii]−SFR relation at z ∼ 4.5 cannot be described using standard local descriptions, but is consistent with a metal-dependent relation assuming metallicities around $50{{\ \rm per\ cent}}$ solar. To explain the measured dust-corrected luminosity ratios of $\log (L_{\rm [OII]}/L_{\rm [CII]}) \sim 0.98^{+0.21}_{-0.22}$ and $\log (L_{\rm [OII]}/L_{\rm H\alpha }) \sim -0.22^{+0.13}_{-0.15}$ for our sample, ionization parameters log (U) < −2 and electron densities $\log (\rm n_e / {\rm [cm^{-3}]}) \sim 2.5-3$ are required. The former is consistent with galaxies at z ∼ 2−3, however lower than at z > 6. The latter may be slightly higher than expected given the galaxies’ specific SFR. The analysis of this pilot sample suggests that typical log (M/M⊙) > 9 galaxies at z ∼ 4.5 to have broadly similar ISM properties as their descendants at z ∼ 2 and suggest a strong evolution of ISM properties since the epoch of reionization at z > 6.

     
    more » « less