skip to main content


Title: Detection of Subsurface, Nanometer‐Scale Crystallographic Defects by Nonlinear Light Scattering and Localization
Abstract

Heteroepitaxial crystalline films underlie many electronic and optical technologies but are prone to forming defects at their heterointerfaces. Atomic‐scale defects such as threading dislocations that propagate into a film impede the flow of charge carriers and light degrading electrical/optical performance of devices. Diagnosis of subsurface defects traditionally requires time‐consuming invasive techniques such as cross‐sectional transmission electron microscopy. Using III–V films grown on Si, noninvasive, bench‐top diagnosis of subsurface defects have been demonstrated by optical second‐harmonic scanning probe microscope. A high‐contrast pattern is observed of subwavelength “hot spots” caused by scattering and localization of fundamental light by defect scattering sites. Size of these observed hotspots are strongly correlated to the density of dislocation defects. The results not only demonstrate a global and versatile method for diagnosing subsurface scattering sites but uniquely elucidate optical properties of disordered media. An extension to third harmonics would enable irregularities detection in non‐χ(2)materials making the technique universally applicable.

 
more » « less
NSF-PAR ID:
10366682
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
9
Issue:
16
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report on the development and extensive characterization of co-sputtered tantala–zirconia (Ta 2 O 5 -ZrO 2 ) thin films, with the goal to decrease coating Brownian noise in present and future gravitational-wave detectors. We tested a variety of sputtering processes of different energies and deposition rates, and we considered the effect of different values of cation ratio η = Zr/(Zr + Ta) and of post-deposition heat treatment temperature T a on the optical and mechanical properties of the films. Co-sputtered zirconia proved to be an efficient way to frustrate crystallization in tantala thin films, allowing for a substantial increase of the maximum annealing temperature and hence for a decrease of coating mechanical loss φ c . The lowest average coating loss was observed for an ion-beam sputtered sample with η = 0.485 ± 0.004 annealed at 800 °C, yielding φ ¯ c = 1.8 × 1 0 − 4 rad. All coating samples showed cracks after annealing. Although in principle our measurements are sensitive to such defects, we found no evidence that our results were affected. The issue could be solved, at least for ion-beam sputtered coatings, by decreasing heating and cooling rates down to 7 °C h −1 . While we observed as little optical absorption as in the coatings of current gravitational-wave interferometers (0.5 parts per million), further development will be needed to decrease light scattering and avoid the formation of defects upon annealing. 
    more » « less
  2. Abstract

    In computed radiography, scattering of the stimulation light by the storage phosphor crystals in the imaging plates negatively impacts spatial resolution. Storage phosphor plates with thinner phosphor layers have been developed to reduce scattering distance and increase spatial resolution, although at the expense of reduced x‐ray absorption. The authors hypothesize that a transparent or translucent nanostructured film, containing a much higher percentage of storage phosphor crystals than achievable in bulk glass‐ceramic materials made by conventional methods, may have acceptable photostimulated luminescence efficiency and imaging performance characteristics greater than commercial imaging plates. Films were produced via pulsed laser deposition by alternating target materials of the storage phosphor BaCl2:Eu2+and either silica or silicon. X‐ray diffraction and photoluminescence characterization were conducted to confirm the presence of BaCl2:Eu2+crystallites. The films were able to store optical data and be read out to produce x‐ray radiographs demonstrating 50‐µm spatial resolution. The performance of the experimental storage phosphor plates was compared to commercially available imaging plates. The authors demonstrate for the first time the synthesis of a glass‐ceramic imaging plate for computed radiography by pulsed laser deposition.

     
    more » « less
  3. Abstract

    We performed polarized reflection and transmission measurements on the layered conducting oxide PdCoO2thin films. For theab-plane, an optical peak near Ω ≈ 750 cm−1drives the scattering rate 1/τ(ω) and effective massm*(ω) of the Drude carrier to increase and decrease respectively forω ≧ Ω. For thec-axis, a longitudinal optical phonon (LO) is present at Ω as evidenced by a peak in the loss function Im[−1/εc(ω)]. Further polarized measurements in different light propagation (q) and electric field (E) configurations indicate that the Peak at Ω results from an electron-phonon coupling of theab-plane carrier with thec-LO phonon, which leads to the frequency-dependent 1/τ(ω) andm*(ω). This unusual interaction was previously reported in high-temperature superconductors (HTSC) between a non-Drude, mid-infrared (IR) band and ac-LO. On the contrary, it is the Drude carrier that couples in PdCoO2. The coupling between theab-plane Drude carrier andc-LO suggests that thec-LO phonon may play a significant role in the characteristicab-plane electronic properties of PdCoO2, including the ultra-high dc-conductivity, phonon-drag, and hydrodynamic electron transport.

     
    more » « less
  4. Abstract

    The first experimental realization of the intrinsic (not dominated by defects) charge conduction regime in lead‐halide perovskite field‐effect transistors (FETs) is reported. The advance is enabled by: i) a new vapor‐phase epitaxy technique that results in large‐area single‐crystalline cesium lead bromide (CsPbBr3) films with excellent structural and surface properties, including atomically flat surface morphology, essentially free from defects and traps at the level relevant to device operation; ii) an extensive materials analysis of these films using a variety of thin‐film and surface probes certifying the chemical and structural quality of the material; and iii) the fabrication of nearly ideal (trap‐free) FETs with characteristics superior to any reported to date. These devices allow the investigation of the intrinsic FET and (gated) Hall‐effect carrier mobilities as functions of temperature. The intrinsic mobility is found to increase on cooling from ≈30 cm2V−1s−1at room temperature to ≈250 cm2V−1s−1at 50 K, revealing a band transport limited by phonon scattering. Establishing the intrinsic (phonon‐limited) mobility provides a solid test for theoretical descriptions of carrier transport in perovskites, reveals basic limits to the technology, and points to a path for future high‐performance perovskite electronic devices.

     
    more » « less
  5. Abstract

    Semiconducting molecules have been employed to passivate traps extant in the perovskite film for enhancement of perovskite solar cells (PSCs) efficiency and stability. A molecular design strategy to passivate the defects both on the surface and interior of the CH3NH3PbI3perovskite layer, using two phthalocyanine (Pc) molecules (NP‐SC6‐ZnPc andNP‐SC6‐TiOPc) is demonstrated. The presence of lone electron pairs on S, N, and O atoms of the Pc molecular structures provides the opportunity for Lewis acid–base interactions with under‐coordinated Pb2+sites, leading to efficient defect passivation of the perovskite layer. The tendency of bothNP‐SC6‐ZnPc andNP‐SC6‐TiOPc to relax on the PbI2terminated surface of the perovskite layer is also studied using density functional theory (DFT) calculations. The morphology of the perovskite layer is improved due to employing the Pc passivation strategy, resulting in high‐quality thin films with a dense and compact structure and lower surface roughness. UsingNP‐SC6‐ZnPc andNP‐SC6‐TiOPc as passivating agents, it is observed considerably enhanced power conversion efficiencies (PCEs), from 17.67% for the PSCs based on the pristine perovskite film to 19.39% forNP‐SC6‐TiOPc passivated devices. Moreover, PSCs fabricated based on the Pc passivation method present a remarkable stability under conditions of high moisture and temperature levels.

     
    more » « less