skip to main content


Title: Impact of bPNA Backbone Structural Constraints and Composition on Triplex Hybridization with DNA
Abstract

We report herein a study on the impact of bifacial peptide nucleic acid (bPNA) amino acid composition and backbone modification on DNA binding. A series of bPNA backbone variants with identical net charge were synthesized to display either 4 or 6 melamine (M) bases. These bases form thymine‐melamine‐thymine (TMT) base‐triples, resulting in triplex hybrid stem structures with T‐rich DNAs. Analyses of 6 M bPNA‐DNA hybrids suggested that hybrid stability was linked to amino acid secondary structure propensities, prompting a more detailed study in shorter 4 M bPNAs. We synthesized 4 M bPNAs predisposed to adopt helical secondary structure via helix‐turn nucleation in 7‐residue bPNAs using double‐click covalent stapling. Generally, hybrid stability improved upon stapling, but amino acid composition had a more significant effect. We also pursued an alternative strategy for bPNA structural preorganization by incorporation of residues with strong backbone amide conformational preferences such as 4R‐ and 4S‐fluoroprolines. Notably, these derivatives exhibited an additional improvement in hybrid stability beyond both unsubstituted proline bPNA analogues and the helically patterned bPNAs. Overall, these findings demonstrate the tunability of bPNA‐DNA hybrid stability through bPNA backbone structural propensities and amino acid composition.

 
more » « less
NSF-PAR ID:
10366693
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemBioChem
Volume:
23
Issue:
8
ISSN:
1439-4227
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We hypothesize that programmable hybridization to noncanonical nucleic acid motifs may be achieved by macromolecular display of binders to individual noncanonical pairs (NCPs). As each recognition element may individually have weak binding to an NCP, we developed a semi‐rational approach to detect low affinity interactions between selected nitrogenous bases and noncanonical sites in duplex DNA and RNA. A set of fluorogenic probes was synthesized by coupling abiotic (triazines, pyrimidines) and native RNA bases to thiazole orange (TO) dye. This probe library was screened against duplex nucleic acid substrates bearing single abasic, single NCP, and tandem NCP sites. Probe engagement with NCP sites was reported by 100–1000× fluorescence enhancement over background. Binding is strongly context‐dependent, reflective of both molecular recognition and stability: less stable motifs are more likely to bind a synthetic probe. Further, DNA and RNA substrates exhibit entirely different abasic and single NCP binding profiles. While probe binding in the abasic and single NCP screens was monotonous, much richer binding profiles were observed with the screen of tandem NCP sites in RNA, in part due to increased steric accessibility. In addition to known binding interactions between the triazine melamine (M) and T/U sites, the NCP screens identified new targeting elements for pyrimidine‐rich motifs in single NCPs and 2×2 internal bulges. We anticipate that semi‐rational approaches of this type will lead to programmable noncanonical hybridization strategies at the macromolecular level.

     
    more » « less
  2. Background

    Sequence‐specific binding by transcription factors (TFs) plays a significant role in the selection and regulation of target genes. At the protein:DNA interface, amino acid side‐chains construct a diverse physicochemical network of specific and non‐specific interactions, and seemingly subtle changes in amino acid identity at certain positions may dramatically impact TF:DNA binding. Variation of these specificity‐determining residues (SDRs) is a major mechanism of functional divergence between TFs with strong structural or sequence homology.

    Methods

    In this study, we employed a combination of high‐throughput specificity profiling by SELEX and Spec‐seq, structural modeling, and evolutionary analysis to probe the binding preferences of winged helix‐turn‐helix TFs belonging to the OmpR sub‐family inEscherichia coli.

    Results

    We found thatE. coliOmpR paralogs recognize tandem, variably spaced repeats composed of “GT‐A” or “GCT”‐containing half‐sites. Some divergent sequence preferences observed within the “GT‐A” mode correlate with amino acid similarity; conversely, “GCT”‐based motifs were observed for a subset of paralogs with low sequence homology. Direct specificity profiling of a subset of OmpR homologues (CpxR, RstA, and OmpR) as well as predicted “SDR‐swap” variants revealed that individual SDRs may impact sequence preferences locally through direct contact with DNA bases or distally via the DNA backbone.

    Conclusions

    Overall, our work provides evidence for a common structural “code” for sequence‐specific wHTH‐DNA interactions, and demonstrates that surprisingly modest residue changes can enable recognition of highly divergent sequence motifs. Further examination of SDR predictions will likely reveal additional mechanisms controlling the evolutionary divergence of this important class of transcriptional regulators.

     
    more » « less
  3. The hydrolytic deamination of cytosine and 5-methylcytosine drives many of the transition mutations observed in human cancer. The deamination-induced mutagenic intermediates include either uracil or thymine adducts mispaired with guanine. While a substantial array of methods exist to measure other types of DNA adducts, the cytosine deamination adducts pose unusual analytical problems, and adequate methods to measure them have not yet been developed. We describe here a novel hybrid thymine DNA glycosylase (TDG) that is comprised of a 29-amino acid sequence from human TDG linked to the catalytic domain of a thymine glycosylase found in an archaeal thermophilic bacterium. Using defined-sequence oligonucleotides, we show that hybrid TDG has robust mispair-selective activity against deaminated U:G and T:G mispairs. We have further developed a method for separating glycosylase-released free bases from oli- gonucleotides and DNA followed by GC–MS/MS quantification. Using this approach, we have measured for the first time the levels of total uracil, U:G, and T:G pairs in calf thymus DNA. The method presented here will allow the measurement of the for- mation, persistence, and repair of a biologically important class of deaminated cytosine adducts. 
    more » « less
  4. Abstract

    Although rarely used in nature, fluorine has emerged as an important elemental ingredient in the design of proteins with altered folding, stability, oligomerization propensities, and bioactivity. Adding to the molecular modification toolbox, here we report the ability of privileged perfluorinated amphiphiles to noncovalently decorate proteins to alter their conformational plasticity and potentiate their dispersion into fluorous phases. Employing a complementary suite of biophysical, in‐silico and in‐vitro approaches, we establish structure‐activity relationships defining these phenomena and investigate their impact on protein structural dynamics and intracellular trafficking. Notably, we show that the lead compound, perfluorononanoic acid, is 106times more potent in inducing non‐native protein secondary structure in select proteins than is the well‐known helix inducer trifluoroethanol, and also significantly enhances the cellular uptake of complexed proteins. These findings could advance the rational design of fluorinated proteins, inform on potential modes of toxicity for perfluoroalkyl substances, and guide the development of fluorine‐modified biologics with desirable functional properties for drug discovery and delivery applications.

     
    more » « less
  5. Abstract

    This work reports a novel chlorooxime mediated modification of native peptides and proteins under physiologic conditions. This method features fast reaction kinetics (apparentk2=306±4 M−1s−1for GSH) and exquisite selectivity for cysteine residues. This cysteine conjugation reaction can be carried out with just single‐digit micromolar concentrations of the labeling reagent. The conjugates show high stability towards acid, base, and external thiol nucleophiles. A nitrile oxide species generated in situ is likely involved as the key intermediate. Furthermore, a bis‐chlorooxime reagent is synthesized to enable facile Cys‐Cys stapling in native peptides and proteins. This highly efficient cysteine conjugation and stapling was further implemented on bacteriophage to construct chemically modified phage libraries.

     
    more » « less