skip to main content


Title: Spectral Line Depth Variability in Radial Velocity Spectra
Abstract

Stellar active regions, including spots and faculae, can create radial velocity (RV) signals that interfere with the detection and mass measurements of low-mass exoplanets. In doing so, these active regions affect each spectral line differently, but the origin of these differences is not fully understood. Here we explore how spectral line variability correlated with S-index (Ca H and K emission) is related to the atomic properties of each spectral line. Next, we develop a simple analytic stellar atmosphere model that can account for the largest sources of line variability with S-index. Then, we apply this model to HARPS spectra ofαCen B to explain Feiline depth changes in terms of a disk-averaged temperature difference between active and quiet regions on the visible hemisphere of the star. This work helps establish a physical basis for understanding how stellar activity manifests differently in each spectral line and may help future work mitigating the impact of stellar activity on exoplanet RV surveys.

 
more » « less
NSF-PAR ID:
10366784
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
930
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 121
Size(s):
["Article No. 121"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Although instruments for measuring the radial velocities (RVs) of stars now routinely reach sub-metre per second accuracy, the detection of low-mass planets is still very challenging. The rotational modulation and evolution of spots and/or faculae can induce variations in the RVs at the level of a few m s–1 in Sun-like stars. To overcome this, a multidimensional Gaussian Process framework has been developed to model the stellar activity signal using spectroscopic activity indicators together with the RVs. A recently published computationally efficient implementation of this framework, S + LEAF 2, enables the rapid analysis of large samples of targets with sizeable data sets. In this work, we apply this framework to HARPS observations of 268 well-observed targets with precisely determined stellar parameters. Our long-term goal is to quantify the effectiveness of this framework to model and mitigate activity signals for stars of different spectral types and activity levels. In this first paper in the series, we initially focus on the activity indicators (S-index and Bisector Inverse Slope), and use them to (a) measure rotation periods for 49 slow rotators in our sample, (b) explore the impact of these results on the spin-down of middle-aged late F, G, and K stars, and (c) explore indirectly how the spot to facular ratio varies across our sample. Our results should provide valuable clues for planning future RV planet surveys such as the Terra Hunting Experiment or the PLATO ground-based follow-up observations programme, and help fine-tune current stellar structure and evolution models.

     
    more » « less
  2. We present Atacama Large Millimeter/submillimeter Array (ALMA) sub-kiloparsec- to kiloparsec-scale resolution observations of the [C II], CO (9–8), and OH+(11–01) lines along with their dust continuum emission toward the far-infrared (FIR) luminous quasar SDSS J231038.88+185519.7 atz = 6.0031, to study the interstellar medium distribution, the gas kinematics, and the quasar-host system dynamics. We decompose the intensity maps of the [C II] and CO (9–8) lines and the dust continuum with two-dimensional elliptical Sérsic models. The [C II] brightness follows a flat distribution with a Sérsic index of 0.59. The CO (9–8) line and the dust continuum can be fit with an unresolved nuclear component and an extended Sérsic component with a Sérsic index of ∼1, which may correspond to the emission from an active galactic nucleus dusty molecular torus and a quasar host galaxy, respectively. The different [C II] spatial distribution may be due to the effect of the high dust opacity, which increases the FIR background radiation on the [C II] line, especially in the galaxy center, significantly suppressing the [C II] emission profile. The dust temperature drops with distance from the center. The effective radius of the dust continuum is smaller than that of the line emission and the dust mass surface density, but is consistent with that of the star formation rate surface density. This may indicate that the dust emission is a less robust tracer of the dust and gas distribution but is a decent tracer of the obscured star formation activity. The OH+(11–01) line shows a P-Cygni profile with an absorption at ∼–400 km s−1, which may indicate an outflow with a neutral gas mass of (6.2 ± 1.2)×108Malong the line of sight. We employed a three-dimensional tilted ring model to fit the [C II] and CO (9–8) data cubes. The two lines are both rotation dominated and trace identical disk geometries and gas motions. This suggest that the [C II] and CO (9–8) gas are coplanar and corotating in this quasar host galaxy. The consistent circular velocities measured with [C II] and CO (9–8) lines indicate that these two lines trace a similar gravitational potential. We decompose the circular rotation curve measured from the kinematic model fit to the [C II] line into four matter components (black hole, stars, gas, and dark matter). The quasar-starburst system is dominated by baryonic matter inside the central few kiloparsecs. We constrain the black hole mass to be 2.97+0.51-0.77 × 109M; this is the first time that the dynamical mass of a black hole has been measured atz ∼ 6. This mass is consistent with that determined using the scaling relations from quasar emission lines. A massive stellar component (on the order of 109M) may have already existed when the Universe was only ∼0.93 Gyr old. The relations between the black hole mass and the baryonic mass of this quasar indicate that the central supermassive black hole may have formed before its host galaxy.

     
    more » « less
  3. Abstract

    We present the radio properties of 66 spectroscopically confirmed normal star-forming galaxies (SFGs) at 4.4 <z< 5.9 in the COSMOS field that were [Cii]-detected in the Atacama Large Millimeter/submillimeter Array Large Program to INvestigate [Cii] at Early times (ALPINE). We separate these galaxies (“Cii-detected-all”) into lower-redshift (“Cii-detected-lz”; 〈z〉 = 4.5) and higher-redshift (“Cii-detected-hz”; 〈z〉 = 5.6) subsamples, and stack multiwavelength imaging for each subsample from X-ray to radio bands. A radio signal is detected in the stacked 3 GHz images of the Cii-detected-all and lz samples at ≳3σ. We find that the infrared–radio correlation of our sample, quantified byqTIR, is lower than the local relation for normal SFGs at a ∼3σsignificance level, and is instead broadly consistent with that of bright submillimeter galaxies at 2 <z< 5. Neither of these samples show evidence of dominant active galactic nucleus activity in their stacked spectral energy distributions (SEDs), UV spectra, or stacked X-ray images. Although we cannot rule out the possible effects of the assumed spectral index and applied infrared SED templates in causing these differences, at least partially, the lower obscured fraction of star formation than at lower redshift can alleviate the tension between our stackedqTIRs and those of local normal SFGs. It is possible that the dust buildup, which primarily governs the infrared emission, in addition to older stellar populations, has not had enough time to occur fully in these galaxies, whereas the radio emission can respond on a more rapid timescale. Therefore, we might expect a lowerqTIRto be a general property of high-redshift SFGs.

     
    more » « less
  4. Abstract

    Precise radial velocity (PRV) surveys are important for the search for Earth analogs around nearby bright stars, which induce a small stellar reflex motion with an RV amplitude of ∼10 cm s−1. Detecting such a small RV signal poses challenges to instrumentation, data analysis, and the precision of astrophysical models to mitigate stellar jitter. In this work, we investigate an important component in the PRV error budget—the spectral contamination from the Earth’s atmosphere (tellurics). We characterize the effects of telluric absorption on the RV precision and quantify its contribution to the RV error budget over time and across a wavelength range of 350 nm–2.5μm. We use simulated solar spectra with telluric contamination injected, and we extract the RVs using two commonly adopted algorithms: dividing out a telluric model before performing cross-correlation or forward modeling the observed spectrum incorporating a telluric model. We assume various degrees of cleanness in removing the tellurics. We conclude that the RV errors caused by telluric absorption can be suppressed to close to or even below 1–10 cm s−1in the blue optical region. At red through near-infrared wavelengths, however, the residuals of tellurics can induce an RV error on the meter-per-second level even under the most favorable assumptions for telluric removal, leading to significant systematic noise in the RV time series and periodograms. If the red-optical or near-infrared becomes critical in the mitigation of stellar activity, systematic errors from tellurics can be eliminated with a space mission such as EarthFinder.

     
    more » « less
  5. Abstract

    Radial velocity (RV) measurements of transiting multiplanet systems allow us to understand the densities and compositions of planets unlike those in the solar system. Kepler-102, which consists of five tightly packed transiting planets, is a particularly interesting system since it includes a super-Earth (Kepler-102d) and a sub-Neptune-sized planet (Kepler-102e) for which masses can be measured using RVs. Previous work found a high density for Kepler-102d, suggesting a composition similar to that of Mercury, while Kepler-102e was found to have a density typical of sub-Neptune size planets; however, Kepler-102 is an active star, which can interfere with RV mass measurements. To better measure the mass of these two planets, we obtained 111 new RVs using Keck/HIRES and Telescopio Nazionale Galileo/HARPS-N and modeled Kepler-102's activity using quasiperiodic Gaussian process regression. For Kepler-102d, we report a mass upper limitMd< 5.3M(95% confidence), a best-fit massMd= 2.5 ± 1.4M, and a densityρd= 5.6 ± 3.2 g cm−3, which is consistent with a rocky composition similar in density to the Earth. For Kepler-102e we report a massMe= 4.7 ± 1.7Mand a densityρe= 1.8 ± 0.7 g cm−3. These measurements suggest that Kepler-102e has a rocky core with a thick gaseous envelope comprising 2%–4% of the planet mass and 16%–50% of its radius. Our study is yet another demonstration that accounting for stellar activity in stars with clear rotation signals can yield more accurate planet masses, enabling a more realistic interpretation of planet interiors.

     
    more » « less