Located at northern latitudes and subject to large seasonal temperature fluctuations, boreal forests are sensitive to the changing climate, with evidence for both increasing and decreasing productivity, depending upon conditions. Optical remote sensing of vegetation indices based on spectral reflectance offers a means of monitoring vegetation photosynthetic activity and provides a powerful tool for observing how boreal forests respond to changing environmental conditions. Reflectance‐based remotely sensed optical signals at northern latitude or high‐altitude regions are readily confounded by snow coverage, hampering applications of satellite‐based vegetation indices in tracking vegetation productivity at large scales. Unraveling the effects of snow can be challenging from satellite data, particularly when validation data are lacking. In this study, we established an experimental system in Alberta, Canada including six boreal tree species, both evergreen and deciduous, to evaluate the confounding effects of snow on three vegetation indices: the normalized difference vegetation index (NDVI), the photochemical reflectance index (PRI), and the chlorophyll/carotenoid index (CCI), all used in tracking vegetation productivity for boreal forests. Our results revealed substantial impacts of snow on canopy reflectance and vegetation indices, expressed as increased albedo, decreased NDVI values and increased PRI and CCI values. These effects varied among species and functionalmore »
Fog is an important water source for many ecosystems, especially in drylands. Most fog‐vegetation studies focus on individual plant scale; the relationship between fog and vegetation function at larger spatial scales remains unclear. This hinders an accurate prediction of climate change impacts on dryland ecosystems. To this end, we examined the effect of fog on vegetation utilizing both optical and microwave remote sensing‐derived vegetation proxies and fog observations from two locations at Gobabeb and Marble Koppie within the fog‐dominated zone of the Namib Desert. Significantly positive relationships were found between fog and vegetation attributes from optical data at both locations. The positive relationship was also observed for microwave data at Gobabeb. Fog can explain about 10%–30% of variability in vegetation proxies. These findings suggested that fog impacts on vegetation can be quantitatively evaluated from space using remote sensing data, opening a new window for research on fog‐vegetation interactions.
- Publication Date:
- NSF-PAR ID:
- 10366798
- Journal Name:
- Geophysical Research Letters
- Volume:
- 47
- Issue:
- 12
- ISSN:
- 0094-8276
- Publisher:
- DOI PREFIX: 10.1029
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Imaging spectroscopy provides the opportunity to incorporate leaf and canopy optical data into ecological studies, but the extent to which remote sensing of vegetation can enhance the study of belowground processes is not well understood. In terrestrial systems, aboveground and belowground vegetation quantity and quality are coupled, and both influence belowground microbial processes and nutrient cycling. We hypothesized that ecosystem productivity, and the chemical, structural and phylogenetic‐functional composition of plant communities would be detectable with remote sensing and could be used to predict belowground plant and soil processes in two grassland biodiversity experiments: the BioDIV experiment at Cedar Creek Ecosystem Science Reserve in Minnesota and the Wood River Nature Conservancy experiment in Nebraska. We tested whether aboveground vegetation chemistry and productivity, as detected from airborne sensors, predict soil properties, microbial processes and community composition. Imaging spectroscopy data were used to map aboveground biomass, green vegetation cover, functional traits and phylogenetic‐functional community composition of vegetation. We examined the relationships between the image‐derived variables and soil carbon and nitrogen concentration, microbial community composition, biomass and extracellular enzyme activity, and soil processes, including net nitrogen mineralization. In the BioDIV experiment—which has low overall diversity and productivity despite high variation in each—belowground processesmore »
-
Abstract. Accurate boundary layer temperature and humidity profiles are crucial for successful forecasting of fog, and accurate retrievals of liquid water path are important for understanding the climatological significance of fog. Passive ground-based remote sensing systems such as microwave radiometers (MWRs) and infrared spectrometers like the Atmospheric Emitted Radiance Interferometer (AERI), which measures spectrally resolved infrared radiation (3.3 to 19.2 µm), can retrieve both thermodynamic profiles and liquid water path. Both instruments are capable of long-term unattended operation and have the potential to support operational forecasting. Here we compare physical retrievals of boundary layer thermodynamic profiles and liquid water path during 12 cases of thin (LWP<40 g m−2) supercooled radiation fog from an MWR and an AERI collocated in central Greenland. We compare both sets of retrievals to in-situ measurements from radiosondes and surface-based temperature and humidity sensors. The retrievals based on AERI observations accurately capture shallow surface-based temperature inversions (0–10 m a.g.l.) with lapse rates of up to −1.2 ∘C m−1, whereas the strength of the surface-based temperature inversions retrieved from MWR observations alone are uncorrelated with in-situ measurements, highlighting the importance of constraining MWR thermodynamic profile retrievals with accurate surface meteorological data. The retrievals based on AERI observations detect fog onset (defined by a thresholdmore »
-
Abstract Salt marsh ecosystems are underrepresented in process‐based models due to their unique location across the terrestrial–aquatic interface. Particularly, the role of leaf nutrients on canopy photosynthesis (FA) remains unclear, despite their relevance for regulating vegetation growth. We combined multiyear information of canopy‐level nutrients and eddy covariance measurements with canopy surface hyperspectral remote sensing (CSHRS) to quantify the spatial and temporal variability of FAin a temperate salt marsh. We found that FAshowed a positive relationship with canopy‐level N at the ecosystem scale and for areas dominated by
Spartina cynosuroides , but not for areas dominated by shortS. alterniflora . FAshowed a positive relationship with canopy‐level P, K, and Na, but a negative relationship with Fe, for areas associated withS. cynosuroides ,S. alterniflora , and at the ecosystem scale. We used partial least squares regression (PLSR) with CSHRS and found statistically significant data–model agreements to predict canopy‐level nutrients and FA. The red‐edge electromagnetic region and ∼770 nm showed the highest contribution of variance in PLSR models for canopy‐level nutrients and FA, but we propose that underlying sediment biogeochemistry can complicate interpretation of reflectance measurements. Our findings highlight the relevance of spatial variability in salt marshes vegetation and the promising application of CSHRS for linking information of canopy‐levelmore » -
Beavers have established themselves as a key component of low arctic ecosystems over the past several decades. Beavers are widely recognized as ecosystem engineers, but their effects on permafrost-dominated landscapes in the Arctic remain unclear. In this study, we document the occurrence, reconstruct the timing, and highlight the effects of beaver activity on a small creek valley confined by ice-rich permafrost on the Seward Peninsula, Alaska using multi-dimensional remote sensing analysis of satellite (Landsat-8, Sentinel-2, Planet CubeSat, and DigitalGlobe Inc./MAXAR) and unmanned aircraft systems (UAS) imagery. Beaver activity along the study reach of Swan Lake Creek appeared between 2006 and 2011 with the construction of three dams. Between 2011 and 2017, beaver dam numbers increased, with the peak occurring in 2017 (n = 9). Between 2017 and 2019, the number of dams decreased (n = 6), while the average length of the dams increased from 20 to 33 m. Between 4 and 20 August 2019, following a nine-day period of record rainfall (>125 mm), the well-established dam system failed, triggering the formation of a beaver-induced permafrost degradation feature. During the decade of beaver occupation between 2011 and 2021, the creek valley widened from 33 to 180 m (~450% increase) andmore »