skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: Non‐Stationary Probabilistic Tsunami Hazard Assessments Incorporating Climate‐Change‐Driven Sea Level Rise

We face a new era in the assessment of multiple natural hazards whose statistics are becoming alarmingly non‐stationary due to ubiquitous long‐term changes in climate. One particular case is tsunami hazard affected by climate‐change‐driven sea level rise (SLR). A traditional tsunami hazard assessment approach where SLR is omitted or included as a constant sea‐level offset in a probabilistic calculation may misrepresent the impacts of climate‐change. In this paper, a general method called non‐stationary probabilistic tsunami hazard assessment (nPTHA), is developed to include the long‐term time‐varying changes in mean sea level. The nPTHA is based on a non‐stationary Poisson process model, which takes advantage of the independence of arrivals within non‐overlapping time‐intervals to specify a temporally varying hazard mean recurrence rate, affected by SLR. The nPTHA is applied to the South China Sea (SCS) for tsunamis generated by earthquakes in the Manila Subduction Zone. The method provides unique and comprehensive results for inundation hazard, combining tsunami and SLR at a specific location over a given exposure time. The results show that in the SCS, SLR has a significant impact when its amplitude is comparable to that of tsunamis with moderate probability of exceedance. The SLR and its associated uncertainty produce an impact on nPTHA results comparable to that caused by the uncertainty in the earthquake recurrence model. These findings are site‐specific and must be analyzed for different regions. The proposed methodology, however, is sufficiently general to include other non‐stationary phenomena and can be exploited for other hazards affected by SLR.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Accurate delineation of compound flood hazard requires joint simulation of rainfall‐runoff and storm surges within high‐resolution flood models, which may be computationally expensive. There is a need for supplementing physical models with efficient, probabilistic methodologies for compound flood hazard assessment that can be applied under a range of climate and environment conditions. Here we propose an extension to the joint probability optimal sampling method (JPM‐OS), which has been widely used for storm surge assessment, and apply it for rainfall‐surge compound hazard assessment under climate change at the catchment‐scale. We utilize thousands of synthetic tropical cyclones (TCs) and physics‐based models to characterize storm surge and rainfall hazards at the coast. Then we implement a Bayesian quadrature optimization approach (JPM‐OS‐BQ) to select a small number (∼100) of storms, which are simulated within a high‐resolution flood model to characterize the compound flood hazard. We show that the limited JPM‐OS‐BQ simulations can capture historical flood return levels within 0.25 m compared to a high‐fidelity Monte Carlo approach. We find that the combined impact of 2100 sea‐level rise (SLR) and TC climatology changes on flood hazard change in the Cape Fear Estuary, NC will increase the 100‐year flood extent by 27% and increase inundation volume by 62%. Moreover, we show that probabilistic incorporation of SLR in the JPM‐OS‐BQ framework leads to different 100‐year flood maps compared to using a single mean SLR projection. Our framework can be applied to catchments across the United States Atlantic and Gulf coasts under a variety of climate and environment scenarios.

    more » « less
  2. Abstract

    Design of coastal defense structures like seawalls and breakwaters can no longer be based on stationarity assumption. In many parts of the world, an anticipated sea‐level rise (SLR) due to climate change will constitute present‐day extreme sea levels inappropriate for future coastal flood risk assessments since it will significantly increase their probability of occurrence. Here, we first show that global annual maxima sea levels (AMSLs) have been increasing in magnitude over the last decades, primarily due to a positive shift in mean sea level (MSL). Then, we apply non‐stationary extreme value theory to model the extremal behavior of sea levels with MSL as a covariate and quantify the evolution of AMSLs in the following decades using revised probabilistic sea‐level rise projections. Our analysis reveals that non‐stationary distributions exhibit distinct differences compared to simply considering stationary conditions with a change in location parameter equal to the amount of MSL rise. With the use of non‐stationary distributions, we show that by the year 2050 many locations will experience their present‐day 100‐yr return level as an event with return period less than 15 and 9 years under the moderate (RCP4.5) and high (RCP8.5) representative concentration pathways. Also, we find that by the end of this century almost all locations examined will encounter their current 100‐yr return level on an annual basis, even if CO2concentration is kept at moderate levels (RCP4.5). Our assessment accounts for large uncertainty by incorporating ambiguities in both SLR projections and non‐stationary extreme value distribution parameters via a Monte Carlo simulation.

    more » « less
  3. Abstract

    In this paper, we have conducted a probabilistic tsunami hazard assessment (PTHA) for Hong Kong (China) and Kao Hsiung (Taiwan), considering earthquakes generated in the Manila subduction zone. The new PTHA methodology with the consideration of uncertainties of slip distribution and location of future earthquakes extends the stochastic approach of Sepúlveda et al. (2017). Using sensitivity analyses, we further investigate the uncertainties of probability properties defining the slip distribution, the location, and the occurrence of earthquakes. We demonstrate that Kao Hsiung and Hong Kong would be significantly impacted by tsunamis generated byMW > 8.5 earthquakes in the Manila subduction zone. For instance, a specificMW9.0 earthquake scenario is capable of producing tsunami amplitudes exceeding 4.0 and 3.5 m in Kao Hsiung and Hong Kong, respectively, with a probability of 50%. Despite the significant tsunami impact, great earthquakes have long mean return periods. As a result, the PTHA shows that Kao Hsiung and Hong Kong are exposed to a relatively small tsunami hazard. For instance, maximum tsunami amplitudes in the assessed locations of Kao Hsiung and Hong Kong exceed 0.32 and 0.18 m, respectively, with a mean return period of 100 years. The inundation hazard in populated areas is small as well, with mean return periods exceeding 1,000 years. Sensitivity analyses demonstrate that the PTHA can be affected by the uncertainties of the probability properties defining the slip distribution, the location, and the occurrence of earthquakes. However, PTHA results are most sensitive to the choice of the earthquake occurrence model.

    more » « less
  4. Abstract

    The cooccurrence of coastal and riverine flooding leads to compound events with substantial impacts on people and property in low‐lying coastal areas. Climate change could increase the level of compound flood hazard through higher extreme sea levels and river flows. Here, a bivariate flood hazard assessment method is proposed to estimate compound coastal‐riverine frequency under current and future climate conditions. A copula‐based approach is used to estimate the joint return period (JRP) of compound floods by incorporating sea‐level rise (SLR) and changes in peak river flows into the marginal distributions of flood drivers. Specifically, the changes in JRP of compound major coastal‐riverine flooding defined based on simultaneous exceedances above major coastal and riverine thresholds, are explored by midcentury. Subsequently, the increase in the probability of occurrence of at least one compound major coastal‐riverine flooding for a given period of time is quantified. The proposed compound flood hazard assessment is conducted at 26 paired tidal‐riverine stations along the Contiguous United States coast with long‐term data and defined flood thresholds. We show that the northeast Atlantic and the western part of the Gulf coasts are experiencing the highest compound major coastal‐riverine flood probability under current conditions. However, future SLR scenarios show the highest frequency amplification along the southeast Atlantic coast. The impact of changes in peak river flows is found to be considerably less than that of SLR. Climate change impacts, especially SLR, may lead to more frequent compound events, which cannot be ignored for future adaptation responses in estuary regions.

    more » « less
  5. The hazard from earthquake-generated tsunami waves is not only determined by the earthquake’s magnitude and mechanisms, and distance to the earthquake area, but also by the geomorphology of the nearshore and onshore areas, which can change over time. In coastal hazard assessments, a changing coastal environment is commonly taken into account by increasing the sea-level to projected values (static). However, sea-level changes and other climate-change impacts influence the entire coastal system causing morphological changes near- and onshore (dynamic). We compare the run-up of the same suite of earthquake-generated tsunamis to a barrier island-marsh-lagoon-marsh system for statically adjusted and dynamically adjusted sea level and bathymetry. Sea-level projections from 2000 to 2100 are considered. The dynamical adjustment is based on a morphokinetic model that incorporates sea-level along with other climate-change impacts. We employ Representative Concentration Pathways 2.6 and 8.5 without and with treatment of Antarctic Ice-sheet processes (known as K14 and K17) as different sea-level projections. It is important to note that we do not account for the occurrence probability of the earthquakes. Our results indicate that the tsunami run-up hazard for the dynamic case is approximately three times larger than for the static case. Furthermore, we show that nonlinear and complex responses of the barrier island-marsh-lagoon-marsh system to climate change profoundly impacts the tsunami hazard, and we caution that the tsunami run-up is sensitive to climate-change impacts that are less well-studied than sea-level rise. 
    more » « less