skip to main content


Title: Cuffless Blood Pressure Devices
Abstract

Hypertension is associated with more end-organ damage, cardiovascular events, and disability-adjusted life years lost in the United States compared with all other modifiable risk factors. Several guidelines and scientific statements now endorse the use of out-of-office blood pressure (BP) monitoring with ambulatory BP monitoring or home BP monitoring to confirm or exclude hypertension status based on office BP measurement. Current ambulatory or home BP monitoring devices have been reliant on the placement of a BP cuff, typically on the upper arm, to measure BP. There are numerous limitations to this approach. Cuff-based BP may not be well-tolerated for repeated measurements as is utilized with ambulatory BP monitoring. Furthermore, improper technique, including incorrect cuff placement or use of the wrong cuff size, may lead to erroneous readings, affecting diagnosis and management of hypertension. Compared with devices that utilize a cuff, cuffless BP devices may overcome challenges related to technique, tolerability, and overall utility in the outpatient setting. However, cuffless devices have several potential limitations that limit its routine use for the diagnosis and management of hypertension. The review discusses the different approaches for determining BP using various cuffless devices including engineering aspects of cuffless device technologies, validation protocols to test accuracy of cuffless devices, potential barriers to widespread implementation, and future areas of research. This review is intended for the clinicians who utilize out-of-office BP monitoring for the diagnosis and management of hypertension.

 
more » « less
NSF-PAR ID:
10366857
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
American Journal of Hypertension
Volume:
35
Issue:
5
ISSN:
0895-7061
Page Range / eLocation ID:
p. 380-387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Several viral infectious diseases appear limitless since the beginning of the 21stcentury, expanding into pandemic lengths. Thus, there are extensive efforts to provide more efficient means of diagnosis, a better understanding of acquired immunity, and improved monitoring of inflammatory biomarkers, as these are all crucial for controlling the spread of infection while aiding in vaccine development and improving patient outcomes. In this regard, various biosensors have been developed recently to streamline pathogen and immune response detection by addressing the limitations of traditional methods, including isothermal amplification‐based systems and lateral flow assays. This review explores state‐of‐the‐art biosensors for detecting viral pathogens, serological assays, and inflammatory biomarkers from the material perspective, by discussing their advantages, limitations, and further potential regarding their analytical performance, clinical utility, and point‐of‐care adaptability. Additionally, next‐generation biosensing technologies that offer better sensitivity and selectivity, and easy handling for end‐users are highlighted. An emerging example of these next‐generation biosensors are those powered by novel synthetic biology tools, such as clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR‐associated proteins (Cas), in combination with integrated point‐of‐care devices. Lastly, the current challenges are discussed and a roadmap for furthering these advanced biosensing technologies to manage future pandemics is provided.

     
    more » « less
  2. Pulmonary arterial hypertension (PAH) is associated with substantial remodeling of the right ventricle (RV), which may at first be compensatory but at a later stage becomes detrimental to RV function and patient survival. Unlike the left ventricle (LV), the RV remains understudied, and with its thin-walled crescent shape, it is often modeled simply as an appendage of the LV. Furthermore, PAH diagnosis is challenging because it often leaves the LV and systemic circulation largely unaffected. Several treatment strategies such as atrial septostomy, right ventricular assist devices (RVADs) or RV resynchronization therapy have been shown to improve RV function and the quality of life in patients with PAH. However, evidence of their long-term efficacy is limited and lung transplantation is still the most effective and curative treatment option. As such, the clinical need for improved diagnosis and treatment of PAH drives a strong need for increased understanding of drivers and mechanisms of RV growth and remodeling (G&R), and more generally for targeted research into RV mechanics pathology. Computational models stand out as a valuable supplement to experimental research, offering detailed analysis of the drivers and consequences of G&R, as well as a virtual test bench for exploring and refining hypotheses of growth mechanisms. In this review we summarize the current efforts towards understanding RV G&R processes using computational approaches such as reduced-order models, three dimensional (3D) finite element (FE) models, and G&R models. In addition to an overview of the relevant literature of RV computational models, we discuss how the models have contributed to increased scientific understanding and to potential clinical treatment of PAH patients. 
    more » « less
  3. Abstract

    Wearable devices for continuous monitoring of arterial pulse waves have the potential to improve the diagnosis, prognosis, and management of cardiovascular diseases. These pulse wave signals are often affected by the contact pressure between the wearable device and the skin, limiting the accuracy and reliability of hemodynamic parameter quantification. Here, a continuous hemodynamic monitoring device that enables the simultaneous recording of dual‐channel bioimpedance and quantification of pulse wave velocity (PWV) and blood pressure (BP) is reported. The investigations demonstrate the effect of contact pressure on bioimpedance and PWV. The pulsatile bioimpedance magnitude reached its maximum when the contact pressure approximated the mean arterial pressure of the subject. PWV is employed to continuously quantify BP while maintaining comfortable contact pressure for prolonged wear. The mean absolute error and standard deviation of the error compared to the reference value are determined to be 0.1 ± 3.3 mmHg for systolic BP, 1.3 ± 3.7 mmHg for diastolic BP, and −0.4 ± 3.0 mmHg for mean arterial pressure when measurements are conducted in the lying down position. This research demonstrates the potential of wearable dual‐bioimpedance sensors with contact pressure guidance for reliable and continuous hemodynamic monitoring.

     
    more » « less
  4. Zama, Fabiana (Ed.)
    Despite the world-wide prevalence of hypertension, there is a lack in open-source software for analyzing blood pressure data. The R package bp fills this gap by providing functionality for blood pressure data processing, visualization, and feature extraction. In addition to the comprehensive functionality, the package includes six sample data sets covering continuous arterial pressure data (AP), home blood pressure monitoring data (HBPM) and ambulatory blood pressure monitoring data (ABPM), making it easier for researchers to get started. The R package bp is publicly available on CRAN and at https://github.com/johnschwenck/bp . 
    more » « less
  5. Background The proliferation of mobile health (mHealth) applications is partly driven by the advancements in sensing and communication technologies, as well as the integration of artificial intelligence techniques. Data collected from mHealth applications, for example, on sensor devices carried by patients, can be mined and analyzed using artificial intelligence–based solutions to facilitate remote and (near) real-time decision-making in health care settings. However, such data often sit in data silos, and patients are often concerned about the privacy implications of sharing their raw data. Federated learning (FL) is a potential solution, as it allows multiple data owners to collaboratively train a machine learning model without requiring access to each other’s raw data. Objective The goal of this scoping review is to gain an understanding of FL and its potential in dealing with sensitive and heterogeneous data in mHealth applications. Through this review, various stakeholders, such as health care providers, practitioners, and policy makers, can gain insight into the limitations and challenges associated with using FL in mHealth and make informed decisions when considering implementing FL-based solutions. Methods We conducted a scoping review following the guidelines of PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews). We searched 7 commonly used databases. The included studies were analyzed and summarized to identify the possible real-world applications and associated challenges of using FL in mHealth settings. Results A total of 1095 articles were retrieved during the database search, and 26 articles that met the inclusion criteria were included in the review. The analysis of these articles revealed 2 main application areas for FL in mHealth, that is, remote monitoring and diagnostic and treatment support. More specifically, FL was found to be commonly used for monitoring self-care ability, health status, and disease progression, as well as in diagnosis and treatment support of diseases. The review also identified several challenges (eg, expensive communication, statistical heterogeneity, and system heterogeneity) and potential solutions (eg, compression schemes, model personalization, and active sampling). Conclusions This scoping review has highlighted the potential of FL as a privacy-preserving approach in mHealth applications and identified the technical limitations associated with its use. The challenges and opportunities outlined in this review can inform the research agenda for future studies in this field, to overcome these limitations and further advance the use of FL in mHealth. 
    more » « less