skip to main content


Title: A QBO Cookbook: Sensitivity of the Quasi‐Biennial Oscillation to Resolution, Resolved Waves, and Parameterized Gravity Waves
Abstract

An intermediate complexity moist general circulation model is used to investigate the sensitivity of the quasi‐biennial oscillation (QBO) to resolution, diffusion, tropical tropospheric waves, and parameterized gravity waves. Finer horizontal resolution is shown to lead to a shorter period, while finer vertical resolution is shown to lead to a longer period and to a larger amplitude in the lowermost stratosphere. More scale‐selective diffusion leads to a faster and stronger QBO, while enhancing the sources of tropospheric stationary wave activity leads to a weaker QBO. In terms of parameterized gravity waves, broadening the spectral width of the source function leads to a longer period and a stronger amplitude although the amplitude effect saturates in the mid‐stratosphere when the half‐width exceedsm/s. A stronger gravity wave source stress leads to a faster and stronger QBO, and a higher gravity wave launch level leads to a stronger QBO. All of these sensitivities are shown to result from their impact on the resultant wave‐driven momentum torque in the tropical stratosphere. Atmospheric models have struggled to accurately represent the QBO, particularly at moderate resolutions ideal for long climate integrations. In particular, capturing the amplitude and penetration of QBO anomalies into the lower stratosphere (which has been shown to be critical for the tropospheric impacts) has proven a challenge. The results provide a recipe to generate and/or improve the simulation of the QBO in an atmospheric model.

 
more » « less
Award ID(s):
1852727
NSF-PAR ID:
10366880
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
14
Issue:
3
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We compare the response of the Quasi‐Biennial Oscillation (QBO) to a warming climate in eleven atmosphere general circulation models that performed time‐slice simulations for present‐day, doubled, and quadrupled CO2climates. No consistency was found among the models for the QBO period response, with the period decreasing by 8 months in some models and lengthening by up to 13 months in others in the doubled CO2simulations. In the quadrupled CO2simulations, a reduction in QBO period of 14 months was found in some models, whereas in several others the tropical oscillation no longer resembled the present‐day QBO, although it could still be identified in the deseasonalized zonal mean zonal wind timeseries. In contrast, all the models projected a decrease in the QBO amplitude in a warmer climate with the largest relative decrease near 60 hPa. In simulations with doubled and quadrupled CO2, the multi‐model mean QBO amplitudes decreased by 36 and 51%, respectively. Across the models the differences in the QBO period response were most strongly related to how the gravity wave momentum flux entering the stratosphere and tropical vertical residual velocity responded to the increases in CO2amounts. Likewise it was found that the robust decrease in QBO amplitudes was correlated across the models to changes in vertical residual velocity, parametrized gravity wave momentum fluxes, and to some degree the resolved upward wave flux. We argue that uncertainty in the representation of the parameterized gravity waves is the most likely cause of the spread among the eleven models in the QBO's response to climate change.

     
    more » « less
  2. Abstract

    We analyze quiet‐time data from the Gravity Field and Ocean Circulation Explorer satellite as it overpassed the Southern Andes atz≃275 km on 5 July 2010 at 23 UT. We extract the 20 largest traveling atmospheric disturbances from the density perturbations and cross‐track winds using Fourier analysis. Using gravity wave (GW) dissipative theory that includes realistic molecular viscosity, we search parameter space to determine which hot spot traveling atmospheric disturbances are GWs. This results in the identification of 17 GWs having horizontal wavelengthsλH = 170–1,850 km, intrinsic periodsτIr = 11–54 min, intrinsic horizontal phase speedscIH = 245–630 m/s, and density perturbations 0.03–7%. We unambiguously determine the propagation direction for 11 of these GWs and find that most had large meridional components to their propagation directions. Using reverse ray tracing, we find that 10 of these GWs must have been created in the mesosphere or thermosphere. We show that mountain waves (MWs) were observed in the stratosphere earlier that day and that these MWs saturated atz∼ 70–75 km from convective instability. We suggest that these 10 Gravity Field and Ocean Circulation Explorer hot spot GWs are likely tertiary (or higher‐order) GWs created from the dissipation of secondary GWs excited by the local body forces created from MW breaking. We suggest that the other GW is likely a secondary or tertiary (or higher‐order) GW. This study strongly suggests that the hot spot GWs over the Southern Andes in the quiet‐time middle winter thermosphere cannot be successfully modeled by conventional global circulation models where GWs are parameterized and launched in the troposphere or stratosphere.

     
    more » « less
  3. Abstract

    Tropical gravity waves that are generated by convection are generally too small in scale and too high in frequency to be resolved in global climate models, yet their drag forces drive the important global‐scale quasi‐biennial oscillation (QBO) in the lower stratosphere, and models rely on parameterizations of gravity wave drag to simulate the QBO. We compare detailed properties of tropical parameterized gravity waves in the Whole Atmosphere Community Climate Model version 6 (WACCM6) with gravity waves observed by long‐duration superpressure balloons and also compare properties of parameterized convective latent heating with satellite data. Similarities and differences suggest that the WACCM6 parameterizations are excellent tools for representing tropical gravity waves, but the results also suggest detailed changes to the gravity wave parameterization tuning parameter assumptions that would bring the parameterized waves into much better agreement with observations. While WACCM6 currently includes only nonstationary gravity waves from convection, adding gravity waves generated by the steady component of the heating that are stationary relative to moving convective rain cells is likely to improve the simulation of the QBO in the model. The suggested changes have the potential to alleviate common biases in simulated QBO circulations in models.

     
    more » « less
  4. Abstract

    A strong mountain wave, observed over Central Europe on 12 January 2016, is simulated in 2D under two fixed background wind conditions representing opposite tidal phases. The aim of the simulation is to investigate the breaking of the mountain wave and subsequent generation of nonprimary waves in the upper atmosphere. The model results show that the mountain wave first breaks as it approaches a mesospheric critical level creating turbulence on horizontal scales of 8–30 km. These turbulence scales couple directly to horizontal secondary waves scales, but those scales are prevented from reaching the thermosphere by the tidal winds, which act like a filter. Initial secondary waves that can reach the thermosphere range from 60 to 120 km in horizontal scale and are influenced by the scales of the horizontal and vertical forcing associated with wave breaking at mountain wave zonal phase width, and horizontal wavelength scales. Large‐scale nonprimary waves dominate over the whole duration of the simulation with horizontal scales of 107–300 km and periods of 11–22 minutes. The thermosphere winds heavily influence the time‐averaged spatial distribution of wave forcing in the thermosphere, which peaks at 150 km altitude and occurs both westward and eastward of the source in the 2 UT background simulation and primarily eastward of the source in the 7 UT background simulation. The forcing amplitude is2that of the primary mountain wave breaking and dissipation. This suggests that nonprimary waves play a significant role in gravity waves dynamics and improved understanding of the thermospheric winds is crucial to understanding their forcing distribution.

     
    more » « less
  5. Abstract

    Many chemical processes depend non‐linearly on temperature. Gravity‐wave‐induced temperature perturbations have been shown to affect atmospheric chemistry, but accounting for this process in chemistry‐climate models has been a challenge because many gravity waves have scales smaller than the typical model resolution. Here, we present a method to account for subgrid‐scale orographic gravity‐wave‐induced temperature perturbations on the global scale for the Whole Atmosphere Community Climate Model. Temperature perturbation amplitudesconsistent with the model's subgrid‐scale gravity wave parameterization are derived and then used as a sinusoidal temperature perturbation in the model's chemistry solver. Because of limitations in the parameterization, we explore scaling ofbetween 0.6 and 1 based on comparisons to altitude‐dependentdistributions of satellite and reanalysis data, where we discuss uncertainties. We probe the impact on the chemistry from the grid‐point to global scales, and show that the parameterization is able to represent mountain wave events as reported by previous literature. The gravity waves for example, lead to increased surface area densities of stratospheric aerosols. This increases chlorine activation, with impacts on the associated chemical composition. We obtain large local changes in some chemical species (e.g., active chlorine, NOx, N2O5) which are likely to be important for comparisons to airborne or satellite observations, but the changes to ozone loss are more modest. This approach enables the chemistry‐climate modeling community to account for subgrid‐scale gravity wave temperature perturbations interactively, consistent with the internal parameterizations and are expected to yield more realistic interactions and better representation of the chemistry.

     
    more » « less