skip to main content

Title: A search for stellar structures around nine outer halo globular clusters in the Milky Way
ABSTRACT

We use deep imaging from the Dark Energy Camera to explore the peripheral regions of nine globular clusters in the outer halo of the Milky Way. Apart from Whiting 1 and NGC 7492, which are projected against the Sagittarius stream, we see no evidence for adjacent stellar populations to indicate any of these clusters is associated with coherent tidal debris from a destroyed host dwarf. We also find no evidence for tidal tails around any of the clusters in our sample; however, both NGC 1904 and 6981 appear to possess outer envelopes. Motivated by a slew of recent Gaia-based discoveries, we compile a sample of clusters with robust detections of extra-tidal structure, and search for correlations with orbital properties. While we observe that clusters with tidal tails are typically on moderately or very eccentric orbits that are highly inclined to the Galactic plane and often retrograde, these are neither necessary nor sufficient conditions for the formation of extra-tidal structure. That many objects with tidal tails appear to be accreted leads us to speculate that this lack of consistency may stem from the inhomogeneous dynamical history of the Milky Way globular cluster system. Finally, we note that clusters with prominent more » stellar envelopes detected in ground-based imaging (such as NGC 1851 and 7089) are now all known from Gaia to possess long tidal tails – experimental confirmation that the presence of an extended envelope is indicative of tidal erosion.

« less
Authors:
; ;
Publication Date:
NSF-PAR ID:
10366885
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
513
Issue:
3
Page Range or eLocation-ID:
p. 3136-3164
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Globular clusters are prone to lose stars while moving around the Milky Way. These stars escape the clusters and are distributed throughout extended envelopes or tidal tails. However, such extra-tidal structures are not observed in all globular clusters, and yet there are no structural or dynamical parameters that can predict their presence or absence. NGC 6864 is an outer halo globular cluster with reported no observed tidal tails. We used Dark Energy Camera photometry reaching ∼4 mag underneath its main-sequence turnoff to confidently detect an extra-tidal envelope, and stellar debris spread across the cluster outskirts. These features emerged once robust field star filtering techniques were applied to the fainter end of the observed cluster main sequence. NGC 6864 is associated to the Gaia-Enceladus dwarf galaxy, among others 28 globular clusters. Up-to-date, nearly 64${{\ \rm per\,cent}}$ of them have been targeted looking for tidal tails and most of them have been confirmed to exhibit tidal tails. Thus, the present outcomes allow us to speculate on the possibility that Gaia-Enceladus globular clusters share a common pattern of mass loss by tidal disruption.

  2. Abstract

    The theory of stellar escape from globular clusters (GCs) dates back nearly a century, especially the gradual evaporation of GCs via two-body relaxation coupled with external tides. More violent ejection can also occur via strong gravitational scattering, supernovae, gravitational wave-driven mergers, tidal disruption events, and physical collisions, but comprehensive study of the many escape mechanisms has been limited. Recent exquisite kinematic data from the Gaia space telescope has revealed numerous stellar streams in the Milky Way (MW) and traced the origin of many to specific MWGCs, highlighting the need for further examination of stellar escape from these clusters. In this study, the first of a series, we lay the groundwork for detailed follow-up comparisons between Cluster Monte Carlo GC models and the latest Gaia data on the outskirts of MWGCs, their tidal tails, and associated streams. We thoroughly review escape mechanisms from GCs and examine their relative contributions to the escape rate, ejection velocities, and escaper demographics. We show for the first time that three-body binary formation may dominate high-speed ejection from typical MWGCs, potentially explaining some of the hypervelocity stars in the MW. Due to their mass, black holes strongly catalyze this process, and their loss at themore »onset of observable core collapse, characterized by a steep central brightness profile, dramatically curtails three-body binary formation, despite the increased post-collapse density. We also demonstrate that even when born from a thermal eccentricity distribution, escaping binaries have significantly nonthermal eccentricities consistent with the roughly uniform distribution observed in the Galactic field.

    « less
  3. ABSTRACT

    Understanding local stellar kinematic substructures in the solar neighbourhood helps build a complete picture of the formation of the Milky Way, as well as an empirical phase space distribution of dark matter that would inform detection experiments. We apply the clustering algorithm hdbscan on the Gaia early third data release to identify a list of stable clusters in velocity space and action-angle space by taking into account the measurement uncertainties and studying the stability of the clustering results. We find 1405 (497) stars in 23 (6) robust clusters in velocity space (action-angle space) that are consistently not associated with noise. We discuss the kinematic properties of these structures and study whether many of the small clusters belong to a similar larger cluster based on their chemical abundances. They are attributed to the known structures: the Gaia Sausage-Enceladus, the Helmi Stream, and globular cluster NGC 3201 are found in both spaces, while NGC 104 and the thick disc (Sequoia) are identified in velocity space (action-angle space). Although we do not identify any new structures, we find that the hdbscan member selection of already known structures is unstable to input kinematics of the stars when resampled within their uncertainties. We thereforemore »present the stable subset of local kinematic structures, which are consistently identified by the clustering algorithm, and emphasize the need to take into account error propagation during both the manual and automated identification of stellar structures, both for existing ones as well as future discoveries.

    « less
  4. Abstract

    Stellar streams in the Galactic halo are useful probes of the assembly of galaxies like the Milky Way. Many tidal stellar streams that have been found in recent years are accompanied by a known progenitor globular cluster or dwarf galaxy. However, the Orphan–Chenab (OC) stream is one case where a relatively narrow stream of stars has been found without a known progenitor. In an effort to find the parent of the OC stream, we use astrometry from the early third data release of ESA’s Gaia mission (Gaia EDR3) and radial velocity information from the Sloan Digital Sky Survey (SDSS)-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey to find up to 13 stars that are likely members of the OC stream. We use the APOGEE survey to study the chemical nature (for up to 10 stars) of the OC stream in theα(O, Mg, Ca, Si, Ti, and S), odd-Z(Al, K, and V), Fe-peak (Fe, Ni, Mn, Co, and Cr), and neutron-capture (Ce) elemental groups. We find that the stars that make up the OC stream are not consistent with a monometallic population and have a median metallicity of −1.92 dex with a dispersion of 0.28 dex. Our results alsomore »indicate that the α elements are depleted compared to the known Milky Way populations and that its [Mg/Al] abundance ratio is not consistent with second-generation stars from globular clusters. The detailed chemical pattern of these stars, namely the [α/Fe]–[Fe/H] plane and the metallicity distribution, indicates that the OC stream progenitor is very likely to be a dwarf spheroidal galaxy with a mass of ∼106M.

    « less
  5. ABSTRACT

    The study of outer halo globular cluster (GC) populations can give insight into galaxy merging, GC accretion, and the origin of GCs. We use archival Subaru Hyper Suprime-Cam (HSC) data in concert with space-based GALEX, IRAC, and Gaia EDR3 data to select candidate GCs in the outer halo of the M81 group for confirmation and future study. We use a small sample of previously discovered GCs to tune our selection criteria, finding that bright already-known GCs in the M81 group have sizes that are typically slightly larger than the Subaru PSF in our fields. In the optical bands, GCs appear to have colours that are only slightly different from stars. The inclusion of archival IRAC data yields dramatic improvements in colour separation, as the long wavelength baseline aids somewhat in the separation from stars and clearly separates GCs from many compact background galaxies. We show that some previously spectroscopically identified GCs in the M81 group are instead foreground stars or background galaxies. GCs close to M82 have radial velocities, suggesting that they fell into the M81 group along with M82. The overall M81 GC luminosity function is similar to the Milky Way and M31. M81’s outer halo GCs aremore »similar to the Milky Way in their metallicities and numbers, and much less numerous than M31’s more metal-rich outer halo GC population. These properties reflect differences in the three galaxies’ merger histories, highlighting the possibility of using outer halo GCs to trace merger history in larger samples of galaxies.

    « less