skip to main content


Title: Functionalizing Lipid Sponge Droplets with DNA**
Abstract

Nucleic acids are among the most versatile molecules for the construction of biomimetic systems because they can serve as information carriers and programmable construction materials. How nucleic acids interact with coacervate compartments that consist of a lipid sponge phase is not known. Here we systematically characterize the potential of DNA to functionalize lipid sponge droplets and demonstrate a strong size dependence for sequestration into the sponge phase. Double stranded DNA molecules of more than 300 bp are excluded and form a corona on the surface of droplets they are targeted to. Shorter DNA molecules partition efficiently into the lipid sponge phase and can direct DNA‐templated reactions to droplets. We demonstrate repeated capture and release of labeled DNA strands by dynamic hybridization and strand displacement reactions that occur inside droplets. Our system opens new opportunities for DNA‐encoded functions in lipid sponge droplets such as cargo control and signaling.

 
more » « less
NSF-PAR ID:
10366936
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemSystemsChem
Volume:
4
Issue:
3
ISSN:
2570-4206
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Living cells segregate molecules and reactions in various subcellular compartments known as organelles. Spatial organization is likely essential for expanding the biochemical functions of synthetic reaction systems, including artificial cells. Many studies have attempted to mimic organelle functions using lamellar membrane-bound vesicles. However, vesicles typically suffer from highly limited transport across the membranes and an inability to mimic the dense membrane networks typically found in organelles such as the endoplasmic reticulum. Here, we describe programmable synthetic organelles based on highly stable nonlamellar sponge phase droplets that spontaneously assemble from a single-chain galactolipid and nonionic detergents. Due to their nanoporous structure, lipid sponge droplets readily exchange materials with the surrounding environment. In addition, the sponge phase contains a dense network of lipid bilayers and nanometric aqueous channels, which allows different classes of molecules to partition based on their size, polarity, and specific binding motifs. The sequestration of biologically relevant macromolecules can be programmed by the addition of suitably functionalized amphiphiles to the droplets. We demonstrate that droplets can harbor functional soluble and transmembrane proteins, allowing for the colocalization and concentration of enzymes and substrates to enhance reaction rates. Droplets protect bound proteins from proteases, and these interactions can be engineered to be reversible and optically controlled. Our results show that lipid sponge droplets permit the facile integration of membrane-rich environments and self-assembling spatial organization with biochemical reaction systems.

     
    more » « less
  2. Abstract

    Oligonucleotide therapeutics are becoming increasingly important as more are approved by the FDA, both for treatment and vaccination. Similarly, dynamic DNA nanotechnology is a promising technique that can be used to sense exogenous input molecules or endogenous biomarkers and integrate the results of multiple sensing reactionsin situvia a programmed cascade of reactions. The combination of these two technologies could be highly impactful in biomedicine by enabling smart oligonucleotide therapeutics that can autonomously sense and respond to a disease state. A particular challenge, however, is the limited lifetime of standard nucleic acid components in living cells and organisms due to degradation by endogenous nucleases. In this work, we address this challenge by incorporating mirror‐image, ʟ‐DNA nucleotides to produce heterochiral “gapmers”. We use dynamic DNA nanotechnology to show that these modifications keep the oligonucleotide intact in living human cells for longer than an unmodified strand. To this end, we used a sequential transfection protocol for delivering multiple nucleic acids into living human cells while providing enhanced confidence that subsequent interactions are actually occurring within the cells. Taken together, this work advances the state of the art of ʟ‐nucleic acid protection of oligonucleotides and DNA circuitry for applicationsin vivo.

     
    more » « less
  3. ABSTRACT

    Calcium ions (Ca2+) play key roles in various fundamental biological processes such as cell signaling and brain function. Molecular dynamics (MD) simulations have been used to study such interactions, however, the accuracy of the Ca2+models provided by the standard MD force fields has not been rigorously tested. Here, we assess the performance of the Ca2+models from the most popular classical force fields AMBER and CHARMM by computing the osmotic pressure of model compounds and the free energy of DNA–DNA interactions. In the simulations performed using the two standard models, Ca2+ions are seen to form artificial clusters with chloride, acetate, and phosphate species; the osmotic pressure of CaAc2and CaCl2solutions is a small fraction of the experimental values for both force fields. Using the standard parameterization of Ca2+ions in the simulations of Ca2+‐mediated DNA–DNA interactions leads to qualitatively wrong outcomes: both AMBER and CHARMM simulations suggest strong inter‐DNA attraction whereas, in experiment, DNA molecules repel one another. The artificial attraction of Ca2+to DNA phosphate is strong enough to affect the direction of the electric field‐driven translocation of DNA through a solid‐state nanopore. To address these shortcomings of the standard Ca2+model, we introduce a custom model of a hydrated Ca2+ion and show that using our model brings the results of the above MD simulations in quantitative agreement with experiment. Our improved model of Ca2+can be readily applied to MD simulations of various biomolecular systems, including nucleic acids, proteins and lipid bilayer membranes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 752–763, 2016.

     
    more » « less
  4. Abstract

    Bacterial-derived RNA and DNA can function as ligands for intracellular receptor activation and induce downstream signaling to modulate the host response to bacterial infection. The mechanisms underlying the secretion of immunomodulatory RNA and DNA by pathogens such asStaphylococcus aureusand their delivery to intracellular host cell receptors are not well understood. Recently, extracellular membrane vesicle (MV) production has been proposed as a general secretion mechanism that could facilitate the delivery of functional bacterial nucleic acids into host cells.S. aureusproduce membrane-bound, spherical, nano-sized, MVs packaged with a select array of bioactive macromolecules and they have been shown to play important roles in bacterial virulence and in immune modulation through the transmission of biologic signals to host cells. Here we show thatS. aureussecretes RNA and DNA molecules that are mostly protected from degradation by their association with MVs. Importantly, we demonstrate that MVs can be delivered into cultured macrophage cells and subsequently stimulate a potent IFN-β response in recipient cells via activation of endosomal Toll-like receptors. These findings advance our understanding of the mechanisms by which bacterial nucleic acids traffic extracellularly to trigger the modulation of host immune responses.

     
    more » « less
  5. The ability of nucleic acids to catalyze reactions (as well as store and transmit information) is important for both basic and applied science, the first in the context of molecular evolution and the origin of life and the second for biomedical applications. However, the catalytic power of standard nucleic acids (NAs) assembled from just four nucleotide building blocks is limited when compared with that of proteins. Here, we assess the evolutionary potential of libraries of nucleic acids with six nucleotide building blocks as reservoirs for catalysis. We compare the outcomes of in vitro selection experiments toward RNA-cleavage activity of two nucleic acid libraries: one built from the standard four independently replicable nucleotides and the other from six, with the two added nucleotides coming from an artificially expanded genetic information system (AEGIS). Results from comparative experiments suggest that DNA libraries with increased chemical diversity, higher information density, and larger searchable sequence spaces are one order of magnitude richer reservoirs of molecules that catalyze the cleavage of a phosphodiester bond in RNA than DNA libraries built from a standard four-nucleotide alphabet. Evolved AEGISzymes with nitro-carrying nucleobase Z appear to exploit a general acid–base catalytic mechanism to cleave that bond, analogous to the mechanism of the ribonuclease A family of protein enzymes and heavily modified DNAzymes. The AEGISzyme described here represents a new type of catalysts evolved from libraries built from expanded genetic alphabets. 
    more » « less